Imaging-derived mean square displacement (iMSD) is used to address the structural and dynamic properties of subcellular nanostructures, such as vesicles involved in the endo/exocytotic trafficking of solutes and biomolecules. iMSD relies on standard time-lapse imaging, is compatible with any optical setup, and does not need to dwell on single objects to extract trajectories. From each iMSD trace, a unique triplet of average structural and dynamic parameters (i.e., size, local diffusivity, anomalous coefficient) is calculated and combined to build the "iMSD signature" of the nanostructure under study. The potency of this approach is proved here with the exemplary case of macropinosomes. These vesicles evolve in time, changing their average size, number, and dynamic properties passing from early to late stages of intracellular trafficking. As a control, insulin secretory granules (ISGs) are used as a reference for subcellular structures that live in a stationary state in which the average structural and dynamic properties of the whole population of objects are invariant in time. The iMSD analysis highlights these peculiar features quantitatively and paves the way to similar applications at the sub-cellular level, both in the physiological and pathological states.

Probing structural and dynamic properties of trafficking subcellular nanostructures by spatiotemporal fluctuation spectroscopy

Ferri G.;Azzarello F.;Cardarelli F.
2021

Abstract

Imaging-derived mean square displacement (iMSD) is used to address the structural and dynamic properties of subcellular nanostructures, such as vesicles involved in the endo/exocytotic trafficking of solutes and biomolecules. iMSD relies on standard time-lapse imaging, is compatible with any optical setup, and does not need to dwell on single objects to extract trajectories. From each iMSD trace, a unique triplet of average structural and dynamic parameters (i.e., size, local diffusivity, anomalous coefficient) is calculated and combined to build the "iMSD signature" of the nanostructure under study. The potency of this approach is proved here with the exemplary case of macropinosomes. These vesicles evolve in time, changing their average size, number, and dynamic properties passing from early to late stages of intracellular trafficking. As a control, insulin secretory granules (ISGs) are used as a reference for subcellular structures that live in a stationary state in which the average structural and dynamic properties of the whole population of objects are invariant in time. The iMSD analysis highlights these peculiar features quantitatively and paves the way to similar applications at the sub-cellular level, both in the physiological and pathological states.
2021
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
image processing, computer-assisted; secretory vesicles; spectrum analysis; endosomes; nanostructures
   Horizon 2020
File in questo prodotto:
File Dimensione Formato  
jove-protocol-62790-probing-structural-dynamic-properties-trafficking-subcellular.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 705.43 kB
Formato Adobe PDF
705.43 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/123350
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact