Among Histone post-translational modifications (PTMs), lysine acetylation plays a pivotal role in the epigenetic regulation of gene expression, mediated by chromatin modifying enzymes. Due to their activity in physiology and pathology, several chemical compounds have been developed to inhibit the function of these proteins. However, the pleiotropy of these classes of proteins repre-sents a weakness of epigenetic drugs. Ideally, a new generation of epigenetic drugs should target with molecular precision individual acetylated lysines on the target protein. We exploit a PTM-directed interference, based on an intrabody (scFv-58F) that selectively binds acetylated lysine 9 of histone H3 (H3K9ac), to test the hypothesis that targeting H3K9ac yields more specific effects than inhibiting the corresponding HAT enzyme that installs that PTM. In yeast scFv-58F modulates gene expression in a more specific way, compared to two well-established HAT inhibitors. This PTM-specific interference modulated expression of genes involved in ribosome biogenesis and function. In mammalian cells, the scFv-58F induces exclusive changes in the H3K9ac-dependent expression of specific genes. These results prospect the H3K9ac-specific intrabody as the founder of a new class of molecules to directly target histone PTMs, inverting the paradigm from inhibiting the writer enzyme to acting on the PTM

Acetylation-specific interference by anti histone H3K9ac intrabody results in precise modulation of gene expression

Simonetta Lisi;Ottavia Vitaloni;Marco Fantini;Michele Chirichella;Paola Tognini;Sara Cornuti;Mario Costa;Antonino Cattaneo
2022

Abstract

Among Histone post-translational modifications (PTMs), lysine acetylation plays a pivotal role in the epigenetic regulation of gene expression, mediated by chromatin modifying enzymes. Due to their activity in physiology and pathology, several chemical compounds have been developed to inhibit the function of these proteins. However, the pleiotropy of these classes of proteins repre-sents a weakness of epigenetic drugs. Ideally, a new generation of epigenetic drugs should target with molecular precision individual acetylated lysines on the target protein. We exploit a PTM-directed interference, based on an intrabody (scFv-58F) that selectively binds acetylated lysine 9 of histone H3 (H3K9ac), to test the hypothesis that targeting H3K9ac yields more specific effects than inhibiting the corresponding HAT enzyme that installs that PTM. In yeast scFv-58F modulates gene expression in a more specific way, compared to two well-established HAT inhibitors. This PTM-specific interference modulated expression of genes involved in ribosome biogenesis and function. In mammalian cells, the scFv-58F induces exclusive changes in the H3K9ac-dependent expression of specific genes. These results prospect the H3K9ac-specific intrabody as the founder of a new class of molecules to directly target histone PTMs, inverting the paradigm from inhibiting the writer enzyme to acting on the PTM
2022
Settore BIO/09 - Fisiologia
Intracellular antibodies; post-translational modifications (PTMs); epigenetic words; histone acetyltransferases HATs; HAT inhibitors (HATi)
File in questo prodotto:
File Dimensione Formato  
Acceptance-Certificate-ijms-1832477.pdf

accesso aperto

Descrizione: Acceptance certificate
Tipologia: Altro materiale allegato
Licenza: Solo Lettura
Dimensione 171.99 kB
Formato Adobe PDF
171.99 kB Adobe PDF
ijms-1832477.pdf

accesso aperto

Descrizione: Proofs
Tipologia: Accepted version (post-print)
Licenza: Creative Commons
Dimensione 1.64 MB
Formato Adobe PDF
1.64 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/123722
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact