This paper investigates the degree of efficiency for the Moscow Stock Exchange. A market is called efficient if prices of its assets fully reflect all available information. We show that the degree of market efficiency is significantly low for most of the months from 2012 to 2021. We calculate the degree of market efficiency by (i) filtering out regularities in financial data and (ii) computing the Shannon entropy of the filtered return time series. We have developed a simple method for estimating volatility and price staleness in empirical data, in order to filter out such regularity patterns from return time series. The resulting financial time series of stocks' returns are then clustered into different groups according to some entropy measures. In particular, we use the Kullback-Leibler distance and a novel entropy metric capturing the co-movements between pairs of stocks. By using Monte Carlo simulations, we are then able to identify the time periods of market inefficiency for a group of 18 stocks. The inefficiency of the Moscow Stock Exchange that we have detected is a signal of the possibility of devising profitable strategies, net of transaction costs. The deviation from the efficient behavior for a stock strongly depends on the industrial sector it belongs.

Efficiency of the Moscow Stock Exchange before 2022

Andrey Shternshis;Piero Mazzarisi;Stefano Marmi
2022

Abstract

This paper investigates the degree of efficiency for the Moscow Stock Exchange. A market is called efficient if prices of its assets fully reflect all available information. We show that the degree of market efficiency is significantly low for most of the months from 2012 to 2021. We calculate the degree of market efficiency by (i) filtering out regularities in financial data and (ii) computing the Shannon entropy of the filtered return time series. We have developed a simple method for estimating volatility and price staleness in empirical data, in order to filter out such regularity patterns from return time series. The resulting financial time series of stocks' returns are then clustered into different groups according to some entropy measures. In particular, we use the Kullback-Leibler distance and a novel entropy metric capturing the co-movements between pairs of stocks. By using Monte Carlo simulations, we are then able to identify the time periods of market inefficiency for a group of 18 stocks. The inefficiency of the Moscow Stock Exchange that we have detected is a signal of the possibility of devising profitable strategies, net of transaction costs. The deviation from the efficient behavior for a stock strongly depends on the industrial sector it belongs.
2022
Settore SECS-S/06 - Metodi mat. dell'economia e Scienze Attuariali e Finanziarie
Shannon entropy; market efficiency; volatility estimation; price staleness; stock market clustering; Kullback–Leibler divergence; q-fin.ST; q-fin.ST
File in questo prodotto:
File Dimensione Formato  
Efficiency_of_the_Moscow_Stock_Exchange_before_2022.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 373.54 kB
Formato Adobe PDF
373.54 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/124262
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact