Optical properties of metal nanostructures are the basis of several scientific and technological applications. When the nanostructure characteristic size is of the order of few nm or less, it is generally accepted that only a description that explicitly describes electrons by quantum mechanics can reproduce faithfully its optical response. For example, the plasmon resonance shift upon shrinking the nanostructure size (red-shift for simple metals, blue-shift for d-metals such as gold and silver) is universally accepted to originate from the quantum nature of the system. Here we show instead that an atomistic approach based on classical physics, ωFQFμ (frequency dependent fluctuating charges and fluctuating dipoles), is able to reproduce all the typical “quantum” size effects, such as the sign and the magnitude of the plasmon shift, the progressive loss of the plasmon resonance for gold, the atomistically detailed features in the induced electron density, and the non local effects in the nanoparticle response. To support our findings, we compare the ωFQFμ results for Ag and Au with literature time-dependent DFT simulations, showing the capability of fully classical physics to reproduce these TDDFT results. Only electron tunneling between nanostructures emerges as a genuine quantum mechanical effect, that we had to include in the model by an ad hoc term.

Do We Really Need Quantum Mechanics to Describe Plasmonic Properties of Metal Nanostructures?

Giovannini T.;Bonatti L.;Lafiosca P.;Nicoli L.;Castagnola M.;Corni S.;Cappelli C.
2022

Abstract

Optical properties of metal nanostructures are the basis of several scientific and technological applications. When the nanostructure characteristic size is of the order of few nm or less, it is generally accepted that only a description that explicitly describes electrons by quantum mechanics can reproduce faithfully its optical response. For example, the plasmon resonance shift upon shrinking the nanostructure size (red-shift for simple metals, blue-shift for d-metals such as gold and silver) is universally accepted to originate from the quantum nature of the system. Here we show instead that an atomistic approach based on classical physics, ωFQFμ (frequency dependent fluctuating charges and fluctuating dipoles), is able to reproduce all the typical “quantum” size effects, such as the sign and the magnitude of the plasmon shift, the progressive loss of the plasmon resonance for gold, the atomistically detailed features in the induced electron density, and the non local effects in the nanoparticle response. To support our findings, we compare the ωFQFμ results for Ag and Au with literature time-dependent DFT simulations, showing the capability of fully classical physics to reproduce these TDDFT results. Only electron tunneling between nanostructures emerges as a genuine quantum mechanical effect, that we had to include in the model by an ad hoc term.
2022
Settore CHIM/02 - Chimica Fisica
atomistic; interband; gold; silver; tunneling; field enhancement
   Horizon 2020
File in questo prodotto:
File Dimensione Formato  
acsphotonics.2c00761.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 6.39 MB
Formato Adobe PDF
6.39 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/124783
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 17
  • OpenAlex ND
social impact