A planar map is outerplanar if all its vertices belong to the same face. We show that random uniform outerplanar maps with n vertices suitably rescaled by a factor 1/√ n converge in the Gromov-Hausdorff sense to 7 √ 2/9 times Aldous' Brownian tree. The proof uses the bijection of Bonichon, Gavoille and Hanusse (J. Graph Algorithms Appl. 9 (2005) 185-204).
The scaling limit of random outerplanar maps
Caraceni A.
2016
Abstract
A planar map is outerplanar if all its vertices belong to the same face. We show that random uniform outerplanar maps with n vertices suitably rescaled by a factor 1/√ n converge in the Gromov-Hausdorff sense to 7 √ 2/9 times Aldous' Brownian tree. The proof uses the bijection of Bonichon, Gavoille and Hanusse (J. Graph Algorithms Appl. 9 (2005) 185-204).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Caraceni-OuterplanarMaps.pdf
accesso aperto
Tipologia:
Published version
Licenza:
Solo Lettura
Dimensione
512.78 kB
Formato
Adobe PDF
|
512.78 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.