High-energy emission associated with star formation has been proposed as a significant source of interstellar medium (ISM) ionization in low-metallicity starbursts and an important contributor to the heating of the intergalactic medium (IGM) in the high-redshift (z  8) universe. Using Chandra observations of a sample of 30 galaxies at D ≈ 200–450 Mpc that have high specific star formation rates of 3–9 Gyr−1 and metallicities near Z ≈ 0.3Ze, we provide new measurements of the average 0.5–8 keV spectral shape and normalization per unit star formation rate (SFR). We model the sample-combined X-ray spectrum as a combination of hot gas and high-mass X-ray binary (HMXB) populations and constrain their relative contributions. We derive scaling relations of Llog 0.5 8 keV HMXB – /SFR = 40.19 ± 0.06 and Llog 0.5 2 keV gas – /SFR 39.58 ;0.28 0.17 = - + significantly elevated compared to local relations. The HMXB scaling is also somewhat higher than L0.5 8 keV HMXB – –SFR-Z relations presented in the literature, potentially due to our galaxies having relatively low HMXB obscuration and young and X-ray luminous stellar populations. The elevation of the hot gas scaling relation is at the level expected for diminished attenuation due to a reduction of metals; however, we cannot conclude that an L0.5 2 keV gas – –SFR-Z relation is driven solely by changes in ISM metal content. Finally, we present SFR-scaled spectral models (both emergent and intrinsic) that span the X-ray-to-IR band, providing new benchmarks for studies of the impact of ISM ionization and IGM heating in the early universe.

Elevated hot gas and high-mass X-ray binary emission in low-metallicity galaxies: implications for nebular ionization and intergalactic medium heating in the early universe

Andrei Mesinger;
2022

Abstract

High-energy emission associated with star formation has been proposed as a significant source of interstellar medium (ISM) ionization in low-metallicity starbursts and an important contributor to the heating of the intergalactic medium (IGM) in the high-redshift (z  8) universe. Using Chandra observations of a sample of 30 galaxies at D ≈ 200–450 Mpc that have high specific star formation rates of 3–9 Gyr−1 and metallicities near Z ≈ 0.3Ze, we provide new measurements of the average 0.5–8 keV spectral shape and normalization per unit star formation rate (SFR). We model the sample-combined X-ray spectrum as a combination of hot gas and high-mass X-ray binary (HMXB) populations and constrain their relative contributions. We derive scaling relations of Llog 0.5 8 keV HMXB – /SFR = 40.19 ± 0.06 and Llog 0.5 2 keV gas – /SFR 39.58 ;0.28 0.17 = - + significantly elevated compared to local relations. The HMXB scaling is also somewhat higher than L0.5 8 keV HMXB – –SFR-Z relations presented in the literature, potentially due to our galaxies having relatively low HMXB obscuration and young and X-ray luminous stellar populations. The elevation of the hot gas scaling relation is at the level expected for diminished attenuation due to a reduction of metals; however, we cannot conclude that an L0.5 2 keV gas – –SFR-Z relation is driven solely by changes in ISM metal content. Finally, we present SFR-scaled spectral models (both emergent and intrinsic) that span the X-ray-to-IR band, providing new benchmarks for studies of the impact of ISM ionization and IGM heating in the early universe.
2022
Settore FIS/05 - Astronomia e Astrofisica
High mass x-ray binary stars; Metallicity; Star formation; Starburst galaxies; X-ray binary stars; X-ray astronomy; Compact objects
   Horizon 2020
File in questo prodotto:
File Dimensione Formato  
Lehmer_2022_ApJ_930_135.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 2.14 MB
Formato Adobe PDF
2.14 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/125688
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact