We discuss Meyers-Serrin's type results for smooth approximations of functions $b=b(t,x):\mathbb{R}\times\mathbb{R}^n\to\mathbb{R}^m$, with convergence of an energy of the form \[ \int_{\mathbb{R}}\int_{\mathbb{R}^n} w(t,x) \varphi\left(|Db(t,x)|\right)\mathrm{d} x \mathrm{d} t\,, \] where $w>0$ is a suitable weight function, and $\varphi:[0,\infty)\to [0,\infty)$ is a convex function with $\varphi(0)=0$ having exponential or sub-exponential growth.

Optimal C∞ -approximation of functions with exponentially or sub-exponentially integrable derivative

Ambrosio L.
;
2023

Abstract

We discuss Meyers-Serrin's type results for smooth approximations of functions $b=b(t,x):\mathbb{R}\times\mathbb{R}^n\to\mathbb{R}^m$, with convergence of an energy of the form \[ \int_{\mathbb{R}}\int_{\mathbb{R}^n} w(t,x) \varphi\left(|Db(t,x)|\right)\mathrm{d} x \mathrm{d} t\,, \] where $w>0$ is a suitable weight function, and $\varphi:[0,\infty)\to [0,\infty)$ is a convex function with $\varphi(0)=0$ having exponential or sub-exponential growth.
2023
Settore MAT/05 - Analisi Matematica
Vector fields; Sobolev spaces; Ordinary differential equations
   Fondi MUR
File in questo prodotto:
File Dimensione Formato  
Ambrosio_SerraCassano_NicolussiGolo.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 392.98 kB
Formato Adobe PDF
392.98 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/126322
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact