Thermoelectric polyelectrolytes are emerging as ideal material platform for self-powered bio-compatible electronic devices and sensors. However, despite the nanoscale nature of the ionic thermodiffusion processes underlying thermoelectric efficiency boost in polyelectrolytes, to date no evidence for direct probing of ionic diffusion on its relevant length and time scale has been reported. This gap is bridged by developing heat-driven hybrid nanotransistors based on InAs nanowires embedded in thermally biased Na+-functionalized (poly)ethyleneoxide, where the semiconducting nanostructure acts as a nanoscale probe sensitive to the local arrangement of the ionic species. The impact of ionic thermoelectric gating on the nanodevice electrical response is addressed, investigating the effect of device architecture, bias configuration and frequency of the heat stimulus, and inferring optimal conditions for the heat-driven nanotransistor operation. Microscopic quantities of the polyelectrolyte such as the ionic diffusion coefficient are extracted from the analysis of hysteretic behaviors rising in the nanodevices. The reported experimental platform enables simultaneously the ionic thermodiffusion and nanoscale resolution, providing a framework for direct estimation of polyelectrolytes microscopic parameters. This may open new routes for heat-driven nanoelectronic applications and boost the rational design of next-generation polymer-based thermoelectric materials.

Heat-Driven Iontronic Nanotransistors

Domenic Prete
;
Alessia Colosimo;Valeria Demontis;Luca Medda;Valentina Zannier;Valentina Tozzini;Lucia Sorba;Fabio Beltram;Francesco Rossella
2023

Abstract

Thermoelectric polyelectrolytes are emerging as ideal material platform for self-powered bio-compatible electronic devices and sensors. However, despite the nanoscale nature of the ionic thermodiffusion processes underlying thermoelectric efficiency boost in polyelectrolytes, to date no evidence for direct probing of ionic diffusion on its relevant length and time scale has been reported. This gap is bridged by developing heat-driven hybrid nanotransistors based on InAs nanowires embedded in thermally biased Na+-functionalized (poly)ethyleneoxide, where the semiconducting nanostructure acts as a nanoscale probe sensitive to the local arrangement of the ionic species. The impact of ionic thermoelectric gating on the nanodevice electrical response is addressed, investigating the effect of device architecture, bias configuration and frequency of the heat stimulus, and inferring optimal conditions for the heat-driven nanotransistor operation. Microscopic quantities of the polyelectrolyte such as the ionic diffusion coefficient are extracted from the analysis of hysteretic behaviors rising in the nanodevices. The reported experimental platform enables simultaneously the ionic thermodiffusion and nanoscale resolution, providing a framework for direct estimation of polyelectrolytes microscopic parameters. This may open new routes for heat-driven nanoelectronic applications and boost the rational design of next-generation polymer-based thermoelectric materials.
2023
Settore FIS/03 - Fisica della Materia
iontronics; nanoelectronics; nanowires; polyelectrolytes; thermoelectric
File in questo prodotto:
File Dimensione Formato  
Advanced Science - 2023 - Prete - Heat‐Driven Iontronic Nanotransistors.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/126642
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex ND
social impact