Intervening C iv absorbers are key tracers of metal-enriched gas in galaxy haloes over cosmic time. Previous studies suggest that the C iv cosmic mass density (⁠[Math Processing Error]⁠) decreases slowly over 1.5 [Math Processing Error] 5 before declining rapidly at z ≳ 5, but the cause of this downturn is poorly understood. We characterize the [Math Processing Error] evolution over 4.3 ≲ z ≲ 6.3 using 260 absorbers found in 42 XSHOOTER spectra of z ∼ 6 quasars, of which 30 come from the ESO Large Program XQR-30. The large sample enables us to robustly constrain the rate and timing of the downturn. We find that [Math Processing Error] decreases by a factor of 4.8 ± 2.0 over the ∼300 Myr interval between z ∼ 4.7 and ∼5.8. The slope of the column density (log N) distribution function does not change, suggesting that C iv absorption is suppressed approximately uniformly across 13.2 ≤ log N/cm−2 < 15.0. Assuming that the carbon content of galaxy haloes evolves as the integral of the cosmic star formation rate density (with some delay due to stellar lifetimes and outflow travel times), we show that chemical evolution alone could plausibly explain the fast decline in [Math Processing Error] over 4.3 ≲ z ≲ 6.3. However, the C iv/C ii ratio decreases at the highest redshifts, so the accelerated decline in [Math Processing Error] at z ≳ 5 may be more naturally explained by rapid changes in the gas ionization state driven by evolution of the UV background towards the end of hydrogen reionization.

Examining the Decline in the C~IV Content of the Universe over 4.3 ≲ z  ≲ 6.3 using the E-XQR-30 Sample

Valentina D'Odorico;Andrea Pallottini;
2023

Abstract

Intervening C iv absorbers are key tracers of metal-enriched gas in galaxy haloes over cosmic time. Previous studies suggest that the C iv cosmic mass density (⁠[Math Processing Error]⁠) decreases slowly over 1.5 [Math Processing Error] 5 before declining rapidly at z ≳ 5, but the cause of this downturn is poorly understood. We characterize the [Math Processing Error] evolution over 4.3 ≲ z ≲ 6.3 using 260 absorbers found in 42 XSHOOTER spectra of z ∼ 6 quasars, of which 30 come from the ESO Large Program XQR-30. The large sample enables us to robustly constrain the rate and timing of the downturn. We find that [Math Processing Error] decreases by a factor of 4.8 ± 2.0 over the ∼300 Myr interval between z ∼ 4.7 and ∼5.8. The slope of the column density (log N) distribution function does not change, suggesting that C iv absorption is suppressed approximately uniformly across 13.2 ≤ log N/cm−2 < 15.0. Assuming that the carbon content of galaxy haloes evolves as the integral of the cosmic star formation rate density (with some delay due to stellar lifetimes and outflow travel times), we show that chemical evolution alone could plausibly explain the fast decline in [Math Processing Error] over 4.3 ≲ z ≲ 6.3. However, the C iv/C ii ratio decreases at the highest redshifts, so the accelerated decline in [Math Processing Error] at z ≳ 5 may be more naturally explained by rapid changes in the gas ionization state driven by evolution of the UV background towards the end of hydrogen reionization.
2023
Settore FIS/05 - Astronomia e Astrofisica
intergalactic medium; quasars: absorption lines; early Universe
   Horizon 2020
File in questo prodotto:
File Dimensione Formato  
stad294.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 2.08 MB
Formato Adobe PDF
2.08 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/127442
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact