We consider D-finite power series f(z) = sigma(n >= 0) a(n)z(n )with coefficients in a number field K. We show that there is a dichotomy governing the behaviour of h(a(n)) as a function of n, where h is the absolute logarithmic Weil height. As an immediate consequence of our results, we have that either f(z) is rational or h(a(n)) > [K : Q](-1) middot log(n) + O(1) for n in a set of positive upper density and this is best possible when K = Q.
D-finiteness, rationality, and height II: Lower bounds over a set of positive density
Zannier, U
2023
Abstract
We consider D-finite power series f(z) = sigma(n >= 0) a(n)z(n )with coefficients in a number field K. We show that there is a dichotomy governing the behaviour of h(a(n)) as a function of n, where h is the absolute logarithmic Weil height. As an immediate consequence of our results, we have that either f(z) is rational or h(a(n)) > [K : Q](-1) middot log(n) + O(1) for n in a set of positive upper density and this is best possible when K = Q.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0001870823000026-main.pdf
Accesso chiuso
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
461.96 kB
Formato
Adobe PDF
|
461.96 kB | Adobe PDF | Richiedi una copia |
2205.02145.pdf
embargo fino al 19/01/2025
Tipologia:
Accepted version (post-print)
Licenza:
Creative Commons
Dimensione
276.84 kB
Formato
Adobe PDF
|
276.84 kB | Adobe PDF | Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.