We give an explicit arithmetical condition which guarantees the existence of the unstable manifold of the MacKay approximate renormalisation scheme for the breakup of invariant tori in one and a half degrees of freedom Hamiltonian systems, correcting earlier results. Furthermore, when our condition is violated, we give an example of points on which the unstable manifold does not converge. (c) 2022 Elsevier B.V. All rights reserved.

A convergence criterion for the unstable manifolds of the MacKay approximate renormalisation

Lee, Seul Bee;Marmi, Stefano;Schindler, Tanja I.
2022

Abstract

We give an explicit arithmetical condition which guarantees the existence of the unstable manifold of the MacKay approximate renormalisation scheme for the breakup of invariant tori in one and a half degrees of freedom Hamiltonian systems, correcting earlier results. Furthermore, when our condition is violated, we give an example of points on which the unstable manifold does not converge. (c) 2022 Elsevier B.V. All rights reserved.
2022
Settore MAT/07 - Fisica Matematica
Invariant tori; Approximate renormalisation; Continued fractions; v 2
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0167278922000872-main.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 340.83 kB
Formato Adobe PDF
340.83 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/129006
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact