Non-perturbatively generated effective potentials play an extremely useful and often critical role in string and inflationary model building. These potentials are typically computed by methods that assume the system is in equilibrium. For systems out of equilibrium, like an inflaton rolling down its potential, there are corrections to the semi-classical evolution due to transient phenomena. We provide a new qualitative and quantitative understanding of non-perturbative effects in real time for a wide class of toy quantum mechanical models. We derive an effective Schrödinger equation that does not rely on any notion of equilibrium and captures the low-energy dynamics supposedly described by the effective potential. We find that there are potentially large corrections to this potential that are not captured by standard equilibrium techniques, and quantify when these corrections significantly alter the effective dynamics.

Real-time corrections to the effective potential

Leite Pimentel, Guilherme
;
2020

Abstract

Non-perturbatively generated effective potentials play an extremely useful and often critical role in string and inflationary model building. These potentials are typically computed by methods that assume the system is in equilibrium. For systems out of equilibrium, like an inflaton rolling down its potential, there are corrections to the semi-classical evolution due to transient phenomena. We provide a new qualitative and quantitative understanding of non-perturbative effects in real time for a wide class of toy quantum mechanical models. We derive an effective Schrödinger equation that does not rely on any notion of equilibrium and captures the low-energy dynamics supposedly described by the effective potential. We find that there are potentially large corrections to this potential that are not captured by standard equilibrium techniques, and quantify when these corrections significantly alter the effective dynamics.
2020
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
Discrete Symmetries; Field Theories in Lower Dimensions; Nonperturbative Effects; Solitons Monopoles and Instantons
   Horizon 2020
File in questo prodotto:
File Dimensione Formato  
JHEP05(2020)096.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/129450
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact