Several studies investigated the linguistic information implicitly encoded in Neural Language Models. Most of these works focused on quantifying the amount and type of information available within their internal representations and across their layers. In line with this scenario, we proposed a different study, based on Lasso regression, aimed at understanding how the information encoded by BERT sentence-level representations is arranged within its hidden units. Using a suite of several probing tasks, we showed the existence of a relationship between the implicit knowledge learned by the model and the number of individual units involved in the encodings of this competence. Moreover, we found that it is possible to identify groups of hidden units more relevant for specific linguistic properties. © 2021 Association for Computational Linguistics.
How Do BERT embeddings organize linguistic knowledge?
Puccetti, Giovanni
;
2021
Abstract
Several studies investigated the linguistic information implicitly encoded in Neural Language Models. Most of these works focused on quantifying the amount and type of information available within their internal representations and across their layers. In line with this scenario, we proposed a different study, based on Lasso regression, aimed at understanding how the information encoded by BERT sentence-level representations is arranged within its hidden units. Using a suite of several probing tasks, we showed the existence of a relationship between the implicit knowledge learned by the model and the number of individual units involved in the encodings of this competence. Moreover, we found that it is possible to identify groups of hidden units more relevant for specific linguistic properties. © 2021 Association for Computational Linguistics.File | Dimensione | Formato | |
---|---|---|---|
How Do BERT Embeddings Organize Linguistic Knowledge - 2021.deelio-1.6.pdf
accesso aperto
Tipologia:
Published version
Licenza:
Creative Commons
Dimensione
2.54 MB
Formato
Adobe PDF
|
2.54 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.