In a previous report, we demonstrated that Doxorubicin (DOX) intrinsic fluorescence can be exploited in combination with the phasor approach to fluorescence lifetime imaging microscopy (FLIM) and quantitative absorption/fluorescence spectroscopy to resolve the supramolecular organization of the drug within its FDA-approved nanoformulation, Doxil®. The resulting ‘synthetic identity’ comprises three co-existing physical states of the drug within Doxil®: a dominating fraction of crystallized DOX (DOXc >98%), and two minor fractions of free DOX (DOXf ~1%), and DOX associated with the liposomal membrane (DOXb <1%). This result serves as a benchmark here to address the time evolution of Doxil® synthetic identity. We probe the effect of temperature for a total duration of 6 months in a non-invasive way by FLIM. We confirm Doxil® stability if stored at 4°C, while we detect marked changes in its synthetic identity at 37°C: crystallized DOX gets progressively disassembled in time, in favor of the other two physical states, free and membrane-associated DOX. Our phasor-FLIM- based approach paves the way to time-resolved biochemical assays on the supramolecular organization of encapsulated fluorescent drugs potentially all the way from the production phase to their state within living matte
Monitoring drug stability by label-free fluorescence lifetime imaging: a case study on liposomal doxorubicin
Carretta, Annalisa;Cardarelli, Francesco
2023
Abstract
In a previous report, we demonstrated that Doxorubicin (DOX) intrinsic fluorescence can be exploited in combination with the phasor approach to fluorescence lifetime imaging microscopy (FLIM) and quantitative absorption/fluorescence spectroscopy to resolve the supramolecular organization of the drug within its FDA-approved nanoformulation, Doxil®. The resulting ‘synthetic identity’ comprises three co-existing physical states of the drug within Doxil®: a dominating fraction of crystallized DOX (DOXc >98%), and two minor fractions of free DOX (DOXf ~1%), and DOX associated with the liposomal membrane (DOXb <1%). This result serves as a benchmark here to address the time evolution of Doxil® synthetic identity. We probe the effect of temperature for a total duration of 6 months in a non-invasive way by FLIM. We confirm Doxil® stability if stored at 4°C, while we detect marked changes in its synthetic identity at 37°C: crystallized DOX gets progressively disassembled in time, in favor of the other two physical states, free and membrane-associated DOX. Our phasor-FLIM- based approach paves the way to time-resolved biochemical assays on the supramolecular organization of encapsulated fluorescent drugs potentially all the way from the production phase to their state within living matteFile | Dimensione | Formato | |
---|---|---|---|
Carretta_2023_J._Phys.__Conf._Ser._2579_012009.pdf
accesso aperto
Descrizione: conference article
Tipologia:
Published version
Licenza:
Creative Commons
Dimensione
973.3 kB
Formato
Adobe PDF
|
973.3 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.