Several gas-phase spectroscopic investigations have focused on a better understanding of the nature of weak, non-covalent interactions in model systems. However, their characterization and interpretation are still far from being satisfactory. A promising route to fill this gap is offered by strategies in which high-resolution rotational spectroscopy is deeply integrated with state-of-The-Art quantum-chemical methodology to accurately determine intermolecular parameters and interaction energies, with the latter interpreted by means of powerful energy decomposition analyses (EDAs). As a proof of concept of this approach, we have selected the adducts formed by n-propylamine (PA) and iso-propylamine (IPA) with water. Among the stable structures computationally predicted, four (out of five) isomers of the PA-water complex and two isomers (trans and gauche) of the IPA-water adduct have been characterized with supersonic jet Fourier transform microwave spectroscopy. Starting from the experimental rotational constants for different isotopic species, computation of the corresponding vibrational corrections allowed a semi-experimental determination of the intermolecular parameters. Different EDAs point out that in all cases a strong O-H⋯N hydrogen bond is the primary interaction. Accurate computations indicate that the length and ramification of the alkyl chain do not significantly affect the water-Amine interactions, which-on the contrary-modify the stability order of PA conformers with respect to the isolated systems.
Theory meets experiment for elucidating the structure and stability of non-covalent complexes: Water-Amine interaction as a proof of concept
Melli, Alessio;Spada, Lorenzo;Gou, Qian
;Barone, Vincenzo
;Puzzarini, Cristina
2020
Abstract
Several gas-phase spectroscopic investigations have focused on a better understanding of the nature of weak, non-covalent interactions in model systems. However, their characterization and interpretation are still far from being satisfactory. A promising route to fill this gap is offered by strategies in which high-resolution rotational spectroscopy is deeply integrated with state-of-The-Art quantum-chemical methodology to accurately determine intermolecular parameters and interaction energies, with the latter interpreted by means of powerful energy decomposition analyses (EDAs). As a proof of concept of this approach, we have selected the adducts formed by n-propylamine (PA) and iso-propylamine (IPA) with water. Among the stable structures computationally predicted, four (out of five) isomers of the PA-water complex and two isomers (trans and gauche) of the IPA-water adduct have been characterized with supersonic jet Fourier transform microwave spectroscopy. Starting from the experimental rotational constants for different isotopic species, computation of the corresponding vibrational corrections allowed a semi-experimental determination of the intermolecular parameters. Different EDAs point out that in all cases a strong O-H⋯N hydrogen bond is the primary interaction. Accurate computations indicate that the length and ramification of the alkyl chain do not significantly affect the water-Amine interactions, which-on the contrary-modify the stability order of PA conformers with respect to the isolated systems.File | Dimensione | Formato | |
---|---|---|---|
c9cp06768j.pdf
Accesso chiuso
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
2.44 MB
Formato
Adobe PDF
|
2.44 MB | Adobe PDF | Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.