We consider the family of non-local and non-convex functionals introduced by H. Brézis and H.-M. Nguyen in a recent paper. These functionals Gamma-converge to a multiple of the Sobolev norm or the total variation, depending on a summability exponent, but the exact values of the constants are unknown in many cases. We describe a new approach to the Gamma-convergence result that leads in some special cases to the exact value of the constants, and to the existence of smooth recovery families.

On the shape factor of interaction laws for a non-local approximation of the Sobolev norm and the total variation = Sur le facteur de forme des lois d'interaction pour une approximation non locale de la norme de Sobolev et de la variation totale

Antonucci, Clara;Gobbino, Massimo;Migliorini, Matteo;Picenni, Nicola
2018

Abstract

We consider the family of non-local and non-convex functionals introduced by H. Brézis and H.-M. Nguyen in a recent paper. These functionals Gamma-converge to a multiple of the Sobolev norm or the total variation, depending on a summability exponent, but the exact values of the constants are unknown in many cases. We describe a new approach to the Gamma-convergence result that leads in some special cases to the exact value of the constants, and to the existence of smooth recovery families.
2018
Settore MAT/05 - Analisi Matematica
File in questo prodotto:
File Dimensione Formato  
01-CRAS-On the shape factor.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 283.12 kB
Formato Adobe PDF
283.12 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/134842
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact