Identifying the portions of trajectory data where movement ends and a significant stop starts is a basic, yet fundamental task that can affect the quality of any mobility analytics process. Most of the many existing solutions adopted by researchers and practitioners are simply based on fixed spatial and temporal thresholds stating when the moving object remained still for a significant amount of time, yet such thresholds remain as static parameters for the user to guess. In this work we study the trajectory segmentation from a multi-granularity perspec tive, looking for a better understanding of the problem and for an automatic, user-adaptive and essentially parameter-free solution that flexibly adjusts the segmentation criteria to the specific user under study and to the geographical areas they traverse. Experiments over real data, and comparison against simple and state-of-the-art competitors show that the flexibility of the proposed methods has a positive impact on results.

Individual and Collective Stop-Based Adaptive Trajectory Segmentation

Bonavita, Agnese
;
2022

Abstract

Identifying the portions of trajectory data where movement ends and a significant stop starts is a basic, yet fundamental task that can affect the quality of any mobility analytics process. Most of the many existing solutions adopted by researchers and practitioners are simply based on fixed spatial and temporal thresholds stating when the moving object remained still for a significant amount of time, yet such thresholds remain as static parameters for the user to guess. In this work we study the trajectory segmentation from a multi-granularity perspec tive, looking for a better understanding of the problem and for an automatic, user-adaptive and essentially parameter-free solution that flexibly adjusts the segmentation criteria to the specific user under study and to the geographical areas they traverse. Experiments over real data, and comparison against simple and state-of-the-art competitors show that the flexibility of the proposed methods has a positive impact on results.
2022
Settore INF/01 - Informatica
Mobility Data Mining, Segmentation, User Modeling
   Big Data for Mobility Tracking Knowledge Extraction in Urban Areas
   Track and Know
   European Commission
   Horizon 2020 Framework Programme
   780754
File in questo prodotto:
File Dimensione Formato  
BONAVITA_Paper_02.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 3.57 MB
Formato Adobe PDF
3.57 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/135042
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact