The massive and increasing availability of mobility data enables the study and the prediction of human mobility behavior and activities at various levels. In this paper, we tackle the problem of predicting the crash risk of a car driver in the long term. This is a very challenging task, requiring a deep knowledge of both the driver and their surroundings, yet it has several useful applications to public safety (e.g. by coaching high-risk drivers) and the insurance market (e.g. by adapting pricing to risk). We model each user with a data-driven approach based on a network representation of users’ mobility. In addition, we represent the areas in which users moves through the definition of a wide set of city indicators that capture different aspects of the city. These indicators are based on human mobility and are automatically computed from a set of different data sources, including mobility traces and road networks. Through these city indicators we develop a geographical transfer learning approach for the crash risk task such that we can build effective predictive models for another area where labeled data is not available. Empirical results over real datasets show the superiority of our solution.

City Indicators for Geographical Transfer Learning: An Application to Crash Prediction

Bonavita, Agnese
;
2022

Abstract

The massive and increasing availability of mobility data enables the study and the prediction of human mobility behavior and activities at various levels. In this paper, we tackle the problem of predicting the crash risk of a car driver in the long term. This is a very challenging task, requiring a deep knowledge of both the driver and their surroundings, yet it has several useful applications to public safety (e.g. by coaching high-risk drivers) and the insurance market (e.g. by adapting pricing to risk). We model each user with a data-driven approach based on a network representation of users’ mobility. In addition, we represent the areas in which users moves through the definition of a wide set of city indicators that capture different aspects of the city. These indicators are based on human mobility and are automatically computed from a set of different data sources, including mobility traces and road networks. Through these city indicators we develop a geographical transfer learning approach for the crash risk task such that we can build effective predictive models for another area where labeled data is not available. Empirical results over real datasets show the superiority of our solution.
2022
Settore INF/01 - Informatica
Mobility data model · Crash prediction · Individual mobility network · Mobility data mining · Car insurance
   Big Data for Mobility Tracking Knowledge Extraction in Urban Areas
   Track and Know
   European Commission
   Horizon 2020 Framework Programme
   780754

   SoBigData++: European Integrated Infrastructure for Social Mining and Big Data Analytics
   SoBigData-PlusPlus
   European Commission
   Horizon 2020 Framework Programme
   871042
File in questo prodotto:
File Dimensione Formato  
BONAVITA_Paper_05.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 2.39 MB
Formato Adobe PDF
2.39 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/135063
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact