An Individual Mobility Network (IMN) is a graph representation of the mobility history of an individual that highlights the relevant locations visited (nodes of the graph) and the movements across them (edges), also providing a rich set of annotations of both nodes and edges. Extracting representative features from an IMN has proven to be a valuable task for enabling various learning applications. However, it is also a demanding operation that does not guarantee the inclusion of all important aspects from the human perspective. A vast recent literature on graph embedding goes in a similar direction, yet typically aims at general-purpose methods that might not suit specific contexts. In this paper, we discuss the existing approaches to graph embedding and the specificities of IMNs, trying to find the best matching solutions. We experiment with representative algorithms and study the results in relation to IMN characteristics. Tests are performed on a large dataset of real vehicle trajectories.

On the pursuit of Graph Embedding Strategies for Individual Mobility Networks

Bonavita, Agnese
;
2023

Abstract

An Individual Mobility Network (IMN) is a graph representation of the mobility history of an individual that highlights the relevant locations visited (nodes of the graph) and the movements across them (edges), also providing a rich set of annotations of both nodes and edges. Extracting representative features from an IMN has proven to be a valuable task for enabling various learning applications. However, it is also a demanding operation that does not guarantee the inclusion of all important aspects from the human perspective. A vast recent literature on graph embedding goes in a similar direction, yet typically aims at general-purpose methods that might not suit specific contexts. In this paper, we discuss the existing approaches to graph embedding and the specificities of IMNs, trying to find the best matching solutions. We experiment with representative algorithms and study the results in relation to IMN characteristics. Tests are performed on a large dataset of real vehicle trajectories.
2023
Settore INF/01 - Informatica
IEEE BigData 2023 Conference, International Workshop on Data driven Science for Graphs: Algorithm
Sorrento, Italia
Dicembre 2023
2023 IEEE International Conference on Big Data (BigData),
Institute of Electrical and Electronics Engineers Inc.
9798350324457
individual mobility, graph embedding
File in questo prodotto:
File Dimensione Formato  
BONAVITA_Paper_07.pdf

accesso aperto

Tipologia: Accepted version (post-print)
Licenza: Solo Lettura
Dimensione 4.07 MB
Formato Adobe PDF
4.07 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/135082
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact