Structural proof theory deals with formal representation of proofs and with the investigation of their properties. This thesis provides an analysis of various non-classical logical systems using proof-theoretic methods. The approach consists in the formulation of analytic calculi for these logics which are then used in order to study their metalogical properties. A specific attention is devoted to studying the connections between classical and non-classical reasoning. In particular, the use of analytic sequent calculi allows one to regain desirable structural properties which are lost in non-classical contexts. In this sense, proof-theoretic versions of embeddings between non-classical logics - both finitary and infinitary - prove to be a useful tool insofar as they build a bridge between different logical regions.
Through and beyond classicality: analyticity, embeddings, infinity / Tesi, Matteo; relatore: PIAZZA, Mario; Scuola Normale Superiore, ciclo 35, 11-Sep-2023.
Through and beyond classicality: analyticity, embeddings, infinity
TESI, Matteo
2023
Abstract
Structural proof theory deals with formal representation of proofs and with the investigation of their properties. This thesis provides an analysis of various non-classical logical systems using proof-theoretic methods. The approach consists in the formulation of analytic calculi for these logics which are then used in order to study their metalogical properties. A specific attention is devoted to studying the connections between classical and non-classical reasoning. In particular, the use of analytic sequent calculi allows one to regain desirable structural properties which are lost in non-classical contexts. In this sense, proof-theoretic versions of embeddings between non-classical logics - both finitary and infinitary - prove to be a useful tool insofar as they build a bridge between different logical regions.File | Dimensione | Formato | |
---|---|---|---|
Tesi.pdf
accesso aperto
Descrizione: Tesi PhD
Licenza:
Solo Lettura
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.