The "ego network of words" model captures structural properties in language production associated with cognitive constraints. While previous research focused on the layer-based structure and its semantic properties, this paper argues that an essential element, the concept of an active network, is missing. Drawing inspiration from social ego networks, where the active part includes relationships regularly nurtured by individuals, we establish the notion of an active ego network of words. We demonstrate that without the active network concept, an ego network becomes vulnerable to the amount of data considered, leading to the disappearance of the layered structure in larger datasets. To address this, we define a methodology for extracting the active part of the ego network of words and validate it using interview transcripts and tweets. The robustness of our method to varying input data sizes and temporal stability is demonstrated. In addition, our results are well-aligned with prior analyses of the ego network of words, where the limitation of the data collected led automatically (and implicitly) to approximately consider the active part of the network only. Moreover, the validation on the transcripts dataset (MediaSum) highlights the generalizability of the model across diverse domains and the ingrained cognitive constraints in language usage.

Extracting Active "Ego Networks" of Words: Methodology, Robustness, and Cross-Domain Validation

Ollivier, Kilian;
2023

Abstract

The "ego network of words" model captures structural properties in language production associated with cognitive constraints. While previous research focused on the layer-based structure and its semantic properties, this paper argues that an essential element, the concept of an active network, is missing. Drawing inspiration from social ego networks, where the active part includes relationships regularly nurtured by individuals, we establish the notion of an active ego network of words. We demonstrate that without the active network concept, an ego network becomes vulnerable to the amount of data considered, leading to the disappearance of the layered structure in larger datasets. To address this, we define a methodology for extracting the active part of the ego network of words and validate it using interview transcripts and tweets. The robustness of our method to varying input data sizes and temporal stability is demonstrated. In addition, our results are well-aligned with prior analyses of the ego network of words, where the limitation of the data collected led automatically (and implicitly) to approximately consider the active part of the network only. Moreover, the validation on the transcripts dataset (MediaSum) highlights the generalizability of the model across diverse domains and the ingrained cognitive constraints in language usage.
2023
Settore INF/01 - Informatica
File in questo prodotto:
File Dimensione Formato  
OLLIVIER_paper3.pdf

Accesso chiuso

Descrizione: Paper
Tipologia: Submitted version (pre-print)
Licenza: Non pubblico
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/136294
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact