Mutations in the EPM2A gene encoding laforin cause Lafora disease (LD), a progressive myoclonic epilepsy characterized by drug-resistant seizures and progressive neurological impairment. To date, rodents are the only available models for studying LD; however, their use for drug screening is limited by regulatory restrictions and high breeding costs. To investigate the role of laforin loss of function in early neurodevelopment, and to screen for possible new compounds for treating the disorder, we developed a zebrafish model of LD. Our results showed the epm2a−/− zebrafish to be a faithful model of LD, exhibiting the main disease features, namely motor impairment and neuronal hyperexcitability with spontaneous seizures. The model also showed increased inflammatory response and apoptotic death, as well as an altered autophagy pathway that occurs early in development and likely contributes to the disease progression. Early administration of trehalose was found to be effective for rescuing motor impairment and neuronal hyperexcitability associated with seizures. Our study adds a new tool for investigating LD and might help to identify new treatment opportunities.

Trehalose Treatment in Zebrafish Model of Lafora Disease

Nardi, Gabriele;Landi, Silvia;Ratto, Gian Michele;
2022

Abstract

Mutations in the EPM2A gene encoding laforin cause Lafora disease (LD), a progressive myoclonic epilepsy characterized by drug-resistant seizures and progressive neurological impairment. To date, rodents are the only available models for studying LD; however, their use for drug screening is limited by regulatory restrictions and high breeding costs. To investigate the role of laforin loss of function in early neurodevelopment, and to screen for possible new compounds for treating the disorder, we developed a zebrafish model of LD. Our results showed the epm2a−/− zebrafish to be a faithful model of LD, exhibiting the main disease features, namely motor impairment and neuronal hyperexcitability with spontaneous seizures. The model also showed increased inflammatory response and apoptotic death, as well as an altered autophagy pathway that occurs early in development and likely contributes to the disease progression. Early administration of trehalose was found to be effective for rescuing motor impairment and neuronal hyperexcitability associated with seizures. Our study adds a new tool for investigating LD and might help to identify new treatment opportunities.
2022
Settore BIO/11 - Biologia Molecolare
Settore BIO/15 - Biologia Farmaceutica
Settore BIO/11 - Biologia Molecolare
autophagy; Lafora disease; neuroinflammation; progressive myoclonic epilepsies; trehalose
   Regione Toscana
File in questo prodotto:
File Dimensione Formato  
Della Vecchia 2022.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 4.82 MB
Formato Adobe PDF
4.82 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/136883
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
  • OpenAlex ND
social impact