In light of its ubiquitous presence in the interstellar gas, the chemistry and reactivity of the HCO+ ion requires special attention. The availability of up-to-date collisional data between this ion and the most abundant perturbing species in the interstellar medium is a critical resource in order to derive reliable values of its molecular abundance from astronomical observations. This work intends to provide improved scattering parameters for the HCO+ and He collisional system. We have tested the accuracy of explicitly correlated coupled-cluster methods for mapping the short- and long-range multi-dimensional potential energy surface of atom-ion systems. A validation of the methodology employed for the calculation of the potential well has been obtained from the comparison with experimentally derived bound-state spectroscopic parameters. Finally, by solving the close-coupling scattering equations, we have derived the pressure broadening and shift coefficients for the first six rotational transitions of HCO+ as well as inelastic state-to-state transition rates up to j = 5 in the 5-100 K temperature interval.

An improved study of HCO+ and He system: Interaction potential, collisional relaxation, and pressure broadening

Tonolo Francesca;Bizzocchi Luca;Melosso Mattia;Barone Vincenzo;Puzzarini Cristina
2021

Abstract

In light of its ubiquitous presence in the interstellar gas, the chemistry and reactivity of the HCO+ ion requires special attention. The availability of up-to-date collisional data between this ion and the most abundant perturbing species in the interstellar medium is a critical resource in order to derive reliable values of its molecular abundance from astronomical observations. This work intends to provide improved scattering parameters for the HCO+ and He collisional system. We have tested the accuracy of explicitly correlated coupled-cluster methods for mapping the short- and long-range multi-dimensional potential energy surface of atom-ion systems. A validation of the methodology employed for the calculation of the potential well has been obtained from the comparison with experimentally derived bound-state spectroscopic parameters. Finally, by solving the close-coupling scattering equations, we have derived the pressure broadening and shift coefficients for the first six rotational transitions of HCO+ as well as inelastic state-to-state transition rates up to j = 5 in the 5-100 K temperature interval.
2021
Settore CHIM/02 - Chimica Fisica
File in questo prodotto:
File Dimensione Formato  
234306_1_online.pdf

accesso aperto

Tipologia: Published version
Licenza: Solo Lettura
Dimensione 5.16 MB
Formato Adobe PDF
5.16 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/137526
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact