A search is reported for heavy resonances and quantum black holes decaying into eμ, eτ, and μτ final states in proton-proton collision data recorded by the CMS experiment at the CERN LHC during 2016–2018 at s = 13 TeV, corresponding to an integrated luminosity of 138 fb−1. The eμ, eτ, and μτ invariant mass spectra are reconstructed, and no evidence is found for physics beyond the standard model. Upper limits are set at 95% confidence level on the product of the cross section and branching fraction for lepton flavor violating signals. Three benchmark signals are studied: resonant τ sneutrino production in R parity violating supersymmetric models, heavy Z′ gauge bosons with lepton flavor violating decays, and nonresonant quantum black hole production in models with extra spatial dimensions. Resonant τ sneutrinos are excluded for masses up to 4.2TeV in the eμ channel, 3.7TeV in the eτ channel, and 3.6TeV in the μτ channel. A Z′ boson with lepton flavor violating couplings is excluded up to a mass of 5.0TeV in the eμ channel, up to 4.3Te V in the eτ channel, and up to 4.1TeV in the μτ channel. Quantum black holes in the benchmark model are excluded up to the threshold mass of 5.6TeV in the eμ channel, 5.2TeV in the eτ channel, and 5.0TeV in the μτ channel. In addition, model-independent limits are extracted to allow comparisons with other models for the same final states and similar event selection requirements. The results of these searches provide the most stringent limits available from collider experiments for heavy particles that undergo lepton flavor violating decays. [Figure not available: see fulltext.]. © 2023, The Author(s).

Search for heavy resonances and quantum black holes in eμ, eτ, and μτ final states in proton-proton collisions at √s = 13 TeV

Ligabue, F.;
2023

Abstract

A search is reported for heavy resonances and quantum black holes decaying into eμ, eτ, and μτ final states in proton-proton collision data recorded by the CMS experiment at the CERN LHC during 2016–2018 at s = 13 TeV, corresponding to an integrated luminosity of 138 fb−1. The eμ, eτ, and μτ invariant mass spectra are reconstructed, and no evidence is found for physics beyond the standard model. Upper limits are set at 95% confidence level on the product of the cross section and branching fraction for lepton flavor violating signals. Three benchmark signals are studied: resonant τ sneutrino production in R parity violating supersymmetric models, heavy Z′ gauge bosons with lepton flavor violating decays, and nonresonant quantum black hole production in models with extra spatial dimensions. Resonant τ sneutrinos are excluded for masses up to 4.2TeV in the eμ channel, 3.7TeV in the eτ channel, and 3.6TeV in the μτ channel. A Z′ boson with lepton flavor violating couplings is excluded up to a mass of 5.0TeV in the eμ channel, up to 4.3Te V in the eτ channel, and up to 4.1TeV in the μτ channel. Quantum black holes in the benchmark model are excluded up to the threshold mass of 5.6TeV in the eμ channel, 5.2TeV in the eτ channel, and 5.0TeV in the μτ channel. In addition, model-independent limits are extracted to allow comparisons with other models for the same final states and similar event selection requirements. The results of these searches provide the most stringent limits available from collider experiments for heavy particles that undergo lepton flavor violating decays. [Figure not available: see fulltext.]. © 2023, The Author(s).
2023
Settore FIS/01 - Fisica Sperimentale
Beyond Standard Model; Hadron-Hadron Scattering
   Advanced Multi-Variate Analysis for New Physics Searches at the LHC
   AMVA4NewPhysics
   European Commission
   Horizon 2020 Framework Programme
   675440

   Search for Higgs bosons decaying to charm quarks
   HIGCC
   European Commission
   Horizon 2020 Framework Programme
   724704

   Direct and indirect searches for new physics in events with top quarks using LHC proton-proton collisions at the CMS detector
   LHCTOPVLQ
   European Commission
   Horizon 2020 Framework Programme
   752730

   Majorana neutrino discovery strategy with CMS
   MajorNet
   European Commission
   Horizon 2020 Framework Programme
   758316

   International Training Network for Statistics in High Energy Physics and Society
   INSIGHTS
   European Commission
   Horizon 2020 Framework Programme
   765710

   The strong interaction at the frontier of knowledge: fundamental research and applications
   STRONG-2020
   European Commission
   Horizon 2020 Framework Programme
   824093
File in questo prodotto:
File Dimensione Formato  
JHEP05(2023)227.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/139566
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 2
social impact