A search for new top quark interactions is performed within the framework of an effective field theory using the associated production of either one or two top quarks with a Z boson in multilepton final states. The data sample corresponds to an integrated luminosity of 138 fb−1 of proton-proton collisions at s = 13 TeV collected by the CMS experiment at the LHC. Five dimension-six operators modifying the electroweak interactions of the top quark are considered. Novel machine-learning techniques are used to enhance the sensitivity to effects arising from these operators. Distributions used for the signal extraction are parameterized in terms of Wilson coefficients describing the interaction strengths of the operators. All five Wilson coefficients are simultaneously fit to data and 95% confidence level intervals are computed. All results are consistent with the SM expectations. [Figure not available: see fulltext.] © 2021, The Author(s).

Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at √s = 13 TeV

Ligabue, F.
Membro del Collaboration Group
;
2021

Abstract

A search for new top quark interactions is performed within the framework of an effective field theory using the associated production of either one or two top quarks with a Z boson in multilepton final states. The data sample corresponds to an integrated luminosity of 138 fb−1 of proton-proton collisions at s = 13 TeV collected by the CMS experiment at the LHC. Five dimension-six operators modifying the electroweak interactions of the top quark are considered. Novel machine-learning techniques are used to enhance the sensitivity to effects arising from these operators. Distributions used for the signal extraction are parameterized in terms of Wilson coefficients describing the interaction strengths of the operators. All five Wilson coefficients are simultaneously fit to data and 95% confidence level intervals are computed. All results are consistent with the SM expectations. [Figure not available: see fulltext.] © 2021, The Author(s).
2021
Settore FIS/01 - Fisica Sperimentale
Hadron-Hadron scattering (experiments); Top physics
File in questo prodotto:
File Dimensione Formato  
JHEP12(2021)083.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/139592
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 16
  • OpenAlex ND
social impact