The redshifted 21cm signal from the Cosmic Dawn is expected to provide unprecedented insights into early Universe astrophysics and cosmology. Here we explore how dark matter can heat the intergalactic medium before the first galaxies, leaving a distinctive imprint in the 21cm power spectrum. We provide the first dedicated Fisher matrix forecasts on the sensitivity of the Hydrogen Epoch of Reionization Array (HERA) telescope to dark matter decays. We show that with 1000 hours of observation, HERA has the potential to improve current cosmological constraints on the dark matter decay lifetime by up to three orders of magnitude. Even in extreme scenarios with strong X-ray emission from early-forming, metal-free galaxies, the bounds on the decay lifetime would be improved by up to two orders of magnitude. Overall, HERA shall improve on existing limits for dark matter masses below 2 GeV/c 2 for decays into e+e- and below few MeV/c 2 for decays into photons. © 2024 IOP Publishing Ltd and Sissa Medialab.
21cm signal sensitivity to dark matter decay
QIN, Yuxiang;MESINGER, ANDREI ALBERT
2024
Abstract
The redshifted 21cm signal from the Cosmic Dawn is expected to provide unprecedented insights into early Universe astrophysics and cosmology. Here we explore how dark matter can heat the intergalactic medium before the first galaxies, leaving a distinctive imprint in the 21cm power spectrum. We provide the first dedicated Fisher matrix forecasts on the sensitivity of the Hydrogen Epoch of Reionization Array (HERA) telescope to dark matter decays. We show that with 1000 hours of observation, HERA has the potential to improve current cosmological constraints on the dark matter decay lifetime by up to three orders of magnitude. Even in extreme scenarios with strong X-ray emission from early-forming, metal-free galaxies, the bounds on the decay lifetime would be improved by up to two orders of magnitude. Overall, HERA shall improve on existing limits for dark matter masses below 2 GeV/c 2 for decays into e+e- and below few MeV/c 2 for decays into photons. © 2024 IOP Publishing Ltd and Sissa Medialab.File | Dimensione | Formato | |
---|---|---|---|
Facchinetti_2024_J._Cosmol._Astropart._Phys._2024_005.pdf
accesso aperto
Tipologia:
Published version
Licenza:
Creative Commons
Dimensione
4.02 MB
Formato
Adobe PDF
|
4.02 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.