J. Stix proved that a curve of positive genus over Q which maps to a non-trivial Brauer–Severi variety satisfies the section conjecture. We prove that, if X is a curve of positive genus over a number field k and the Weil restriction Rk/QX admits a rational map to a non-trivial Brauer–Severi variety, then X satisfies the section conjecture. As a consequence, if X maps to a Brauer–Severi variety P such that the corestriction cor k/Q([P]) ∈ Br (Q) is non-trivial, then X satisfies the section conjecture.

On the section conjecture and Brauer–Severi varieties

Bresciani, Giulio
2022

Abstract

J. Stix proved that a curve of positive genus over Q which maps to a non-trivial Brauer–Severi variety satisfies the section conjecture. We prove that, if X is a curve of positive genus over a number field k and the Weil restriction Rk/QX admits a rational map to a non-trivial Brauer–Severi variety, then X satisfies the section conjecture. As a consequence, if X maps to a Brauer–Severi variety P such that the corestriction cor k/Q([P]) ∈ Br (Q) is non-trivial, then X satisfies the section conjecture.
2022
Settore MAT/03 - Geometria
File in questo prodotto:
File Dimensione Formato  
Bresciani - On the section conjecture and Brauer-Severi varieties.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 201.8 kB
Formato Adobe PDF
201.8 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/139847
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact