We prove that a system of locally interacting diffusions carrying discrete masses, subject to an environmental noise and undergoing mass coagulation, converges to a system of Stochastic Partial Differential Equations (SPDEs) with Smoluchowski-type nonlinearity. Existence, uniqueness and regularity of the SPDEs are also proven.

Coagulation dynamics under environmental noise: Scaling limit to SPDE

Flandoli, Franco;Huang, Ruojun
2022

Abstract

We prove that a system of locally interacting diffusions carrying discrete masses, subject to an environmental noise and undergoing mass coagulation, converges to a system of Stochastic Partial Differential Equations (SPDEs) with Smoluchowski-type nonlinearity. Existence, uniqueness and regularity of the SPDEs are also proven.
2022
Settore MAT/06 - Probabilita' e Statistica Matematica
Scaling limits; coagulation dynamics; stochastic PDE; environmental noise; interacting diffusions; rainfall formation.
File in questo prodotto:
File Dimensione Formato  
Alea Roujun Huang.pdf

accesso aperto

Descrizione: pdf finale
Tipologia: Published version
Licenza: Solo Lettura
Dimensione 722.34 kB
Formato Adobe PDF
722.34 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/140267
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact