We report on suspended single-layer graphene deposition by a transfer-printing approach based on polydimethylsiloxane stamps. The transfer printing method allows the exfoliation of graphite flakes from a bulk graphite sample and their residue-free deposition on a silicon dioxide substrate. This deposition system creates a "blistered" graphene surface due to strain induced by the transfer process itself. Single-layer-graphene deposition and its blistering on the substrate are demonstrated by a combination of Raman spectroscopy, scanning electron microscopy, and atomic-force microscopy measurements. Finally, we demonstrate that blister-like suspended graphene are self-supporting single-layer structures and can be flattened by employing a spatially resolved direct-lithography technique based on electron-beam induced etching.

Self-assembly and electron-beam-induced direct etching of suspended graphene nanostructures

BELTRAM, Fabio;PINGUE, Pasqualantonio
2011

Abstract

We report on suspended single-layer graphene deposition by a transfer-printing approach based on polydimethylsiloxane stamps. The transfer printing method allows the exfoliation of graphite flakes from a bulk graphite sample and their residue-free deposition on a silicon dioxide substrate. This deposition system creates a "blistered" graphene surface due to strain induced by the transfer process itself. Single-layer-graphene deposition and its blistering on the substrate are demonstrated by a combination of Raman spectroscopy, scanning electron microscopy, and atomic-force microscopy measurements. Finally, we demonstrate that blister-like suspended graphene are self-supporting single-layer structures and can be flattened by employing a spatially resolved direct-lithography technique based on electron-beam induced etching.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/1409
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 22
  • OpenAlex ND
social impact