Context. Next-generation wide-field optical polarimeters such as Wide-Area Linear Optical Polarimeters (WALOPs) have a field of view (FoV) of tens of arcminutes. Wide-field polarimetric flat sources are essential to the efficient and accurate calibration of these instruments. However, no established wide-field polarimetric standard or flat sources exist at present. Aims. This study tests the feasibility of using the polarized sky patches of the size of around 10 × 10 arcminutes2, at a distance of up to 20 from the Moon, on bright-Moon nights as a wide-field linear polarimetric flat source. Methods. We observed 19 patches of the sky adjacent to the bright-Moon with the RoboPol instrument in the SDSS-r broadband filter. These patches were observed on five nights within two days of the full-Moon across two RoboPol observing seasons. Results. We find that for 18 of the 19 patches, the uniformity in the measured normalized Stokes parameters q and u is within 0.2%, with 12 patches exhibiting uniformity within 0.07% or better for both q and u simultaneously, making them reliable and stable wide-field linear polarization flats. Conclusions. We demonstrate that the sky on bright-Moon nights is an excellent wide-field linear polarization flat source. Various combinations of the normalized Stokes parameters q and u can be obtained by choosing suitable locations of the sky patch with respect to the Moon.
Bright-Moon sky as a wide-field linear Polarimetric flat source for calibration
Ntormousi E.Membro del Collaboration Group
;
2023
Abstract
Context. Next-generation wide-field optical polarimeters such as Wide-Area Linear Optical Polarimeters (WALOPs) have a field of view (FoV) of tens of arcminutes. Wide-field polarimetric flat sources are essential to the efficient and accurate calibration of these instruments. However, no established wide-field polarimetric standard or flat sources exist at present. Aims. This study tests the feasibility of using the polarized sky patches of the size of around 10 × 10 arcminutes2, at a distance of up to 20 from the Moon, on bright-Moon nights as a wide-field linear polarimetric flat source. Methods. We observed 19 patches of the sky adjacent to the bright-Moon with the RoboPol instrument in the SDSS-r broadband filter. These patches were observed on five nights within two days of the full-Moon across two RoboPol observing seasons. Results. We find that for 18 of the 19 patches, the uniformity in the measured normalized Stokes parameters q and u is within 0.2%, with 12 patches exhibiting uniformity within 0.07% or better for both q and u simultaneously, making them reliable and stable wide-field linear polarization flats. Conclusions. We demonstrate that the sky on bright-Moon nights is an excellent wide-field linear polarization flat source. Various combinations of the normalized Stokes parameters q and u can be obtained by choosing suitable locations of the sky patch with respect to the Moon.File | Dimensione | Formato | |
---|---|---|---|
aa46830-23.pdf
accesso aperto
Tipologia:
Published version
Licenza:
Creative Commons
Dimensione
1.32 MB
Formato
Adobe PDF
|
1.32 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.