An issue has been identified in the simulated samples used to calculate the efficiencies, which affects the published cross-section measurements from pp collisions at √ s = 13TeV [1]. What follows is a brief description of the nature of the problems, before the corrected results are given. The charge collected in the LHCb VELO sensors is affected by radiation damage. One such effect, which is more pronounced in the outer regions of downstream sensors, arises from charge induction on second metal layer routing lines [2]. Prior to the start of Run 2, modifications were made to the digitization step in the LHCb simulation framework to model this effect. An error was made in the parametric implementation resulting in a reduction of the track reconstruction efficiency in simulation compared to data for tracks with low pseudorapidity. The tracking efficiency calibration procedure that was applied in this paper to the data and simulation [3] was unable to correct the mismodelling. All results presented in the paper are affected and a similar pattern is seen for all four different mesons. The corrected cross-sections are generally lower with the largest difference at low rapidities and almost no change at high rapidities. The corrected inclusive cross-sections for the four mesons, including charge conjugation, within the range of (Formula presented.) (Figure presented.).

Erratum to: Measurements of prompt charm production cross-sections in pp collisions at √ s = 13 TeV (Journal of High Energy Physics, (2016), 2016, 3, (159), 10.1007/JHEP03(2016)159)

Cenci R.
Membro del Collaboration Group
;
Lusiani A.;Morello M. J.
Membro del Collaboration Group
;
Stracka S.
Membro del Collaboration Group
;
2017

Abstract

An issue has been identified in the simulated samples used to calculate the efficiencies, which affects the published cross-section measurements from pp collisions at √ s = 13TeV [1]. What follows is a brief description of the nature of the problems, before the corrected results are given. The charge collected in the LHCb VELO sensors is affected by radiation damage. One such effect, which is more pronounced in the outer regions of downstream sensors, arises from charge induction on second metal layer routing lines [2]. Prior to the start of Run 2, modifications were made to the digitization step in the LHCb simulation framework to model this effect. An error was made in the parametric implementation resulting in a reduction of the track reconstruction efficiency in simulation compared to data for tracks with low pseudorapidity. The tracking efficiency calibration procedure that was applied in this paper to the data and simulation [3] was unable to correct the mismodelling. All results presented in the paper are affected and a similar pattern is seen for all four different mesons. The corrected cross-sections are generally lower with the largest difference at low rapidities and almost no change at high rapidities. The corrected inclusive cross-sections for the four mesons, including charge conjugation, within the range of (Formula presented.) (Figure presented.).
2017
Settore FIS/01 - Fisica Sperimentale
File in questo prodotto:
File Dimensione Formato  
JHEP05(2017)074.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 600.76 kB
Formato Adobe PDF
600.76 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/141122
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact