We consider in a smooth and bounded two dimensional domain the convergence in the L2 norm, uniformly in time, of the solution of the stochastic Navier-Stokes equations with additive noise and no-slip boundary conditions to the solution of the corresponding Euler equations. We prove, under general regularity on the initial conditions of the Euler equations, that assuming the dissipation of the energy of the solution of the Navier-Stokes equations in a Kato type boundary layer, then the inviscid limit holds.

Inviscid limit for stochastic Navier-Stokes equations under general initial conditions

Luongo, Eliseo
2024

Abstract

We consider in a smooth and bounded two dimensional domain the convergence in the L2 norm, uniformly in time, of the solution of the stochastic Navier-Stokes equations with additive noise and no-slip boundary conditions to the solution of the corresponding Euler equations. We prove, under general regularity on the initial conditions of the Euler equations, that assuming the dissipation of the energy of the solution of the Navier-Stokes equations in a Kato type boundary layer, then the inviscid limit holds.
2024
Settore MAT/06 - Probabilita' e Statistica Matematica
Additive noise; Boundary layer; Energy dissipation; Inviscid limit; No-slip boundary conditions; Turbulence; vanishing viscosity limit; euler equations; flow
File in questo prodotto:
File Dimensione Formato  
Inviscid_limit_2024.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 390.56 kB
Formato Adobe PDF
390.56 kB Adobe PDF   Richiedi una copia
Inviscid_Limit_NS.pdf

embargo fino al 23/01/2025

Tipologia: Accepted version (post-print)
Licenza: Creative Commons
Dimensione 348.26 kB
Formato Adobe PDF
348.26 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/142284
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact