The attenuation of Lyα photons by neutral hydrogen in the intergalactic medium (IGM) at z 5 continues to be a powerful probe for studying the epoch of reionization. Given a framework to estimate the intrinsic (true) Lyα emission of high-z sources, one can infer the ionization state of the IGM during reionization. In this work, we use the enlarged XQR-30 sample of 42 high-resolution and high signal-to-noise quasar spectra between obtained with VLT/X-shooter to place constraints on the IGM neutral fraction. This is achieved using our existing Bayesian QSO reconstruction framework which accounts for uncertainties such as the: (i) posterior distribution of predicted intrinsic Lyα emission profiles (obtained via covariance matrix reconstruction of the Lyα and N v emission lines from unattenuated high-ionization emission line profiles; C iv, Si iv + O iv], and C iii]) and (ii) distribution of ionized regions within the IGM using synthetic damping wing profiles drawn from a 1.63 Gpc3 reionization simulation. Following careful quality control, we used 23 of the 42 available QSOs to obtain constraints/limits on the IGM neutral fraction during the tail-end of reionization. Our median and 68th percentile constraints on the IGM neutral fraction are: and at z = 6.15 and 6.35. Further, we also report 68th percentile upper limits of, 0.20, 0.21, and 0.18 at z = 5.8, 5.95, 6.05, and 6.55. These results imply reionization is still ongoing at, consistent with previous results from XQR-30 (dark fraction and Lyα forest) along with other observational probes considered in the literature.

IGM damping wing constraints on the tail end of reionization from the enlarged XQR-30 sample

Greig B.;Mesinger A.;D'Odorico V.;Gallerani S.;Qin Y.;
2024

Abstract

The attenuation of Lyα photons by neutral hydrogen in the intergalactic medium (IGM) at z 5 continues to be a powerful probe for studying the epoch of reionization. Given a framework to estimate the intrinsic (true) Lyα emission of high-z sources, one can infer the ionization state of the IGM during reionization. In this work, we use the enlarged XQR-30 sample of 42 high-resolution and high signal-to-noise quasar spectra between obtained with VLT/X-shooter to place constraints on the IGM neutral fraction. This is achieved using our existing Bayesian QSO reconstruction framework which accounts for uncertainties such as the: (i) posterior distribution of predicted intrinsic Lyα emission profiles (obtained via covariance matrix reconstruction of the Lyα and N v emission lines from unattenuated high-ionization emission line profiles; C iv, Si iv + O iv], and C iii]) and (ii) distribution of ionized regions within the IGM using synthetic damping wing profiles drawn from a 1.63 Gpc3 reionization simulation. Following careful quality control, we used 23 of the 42 available QSOs to obtain constraints/limits on the IGM neutral fraction during the tail-end of reionization. Our median and 68th percentile constraints on the IGM neutral fraction are: and at z = 6.15 and 6.35. Further, we also report 68th percentile upper limits of, 0.20, 0.21, and 0.18 at z = 5.8, 5.95, 6.05, and 6.55. These results imply reionization is still ongoing at, consistent with previous results from XQR-30 (dark fraction and Lyα forest) along with other observational probes considered in the literature.
2024
Settore FIS/05 - Astronomia e Astrofisica
cosmology: observations; cosmology: theory; dark ages, reionization, first stars; early Universe; intergalactic medium; quasars: emission lines
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/143163
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact