The Ego Network Model (ENM) is a model for the structural organisation of relationships, rooted in evolutionary anthropology, that is found ubiquitously in social contexts. It takes the perspective of a single user (Ego) and organises their contacts (Alters) into a series of (typically 5) concentric circles of decreasing intimacy and increasing size. Alters are sorted based on their tie strength to the Ego, however, this is difficult to measure directly. Traditionally, the interaction frequency has been used as a proxy but this misses the qualitative aspects of connections, such as signs (i.e. polarity), which have been shown to provide extremely useful information. However, the sign of an online social relationship is usually an implicit piece of information, which needs to be estimated by interaction data from Online Social Networks (OSNs), making sign prediction in OSNs a research challenge in and of itself. This work aims to bring the ENM into the signed networks domain by investigating the interplay of signed connections with the ENM. This paper delivers 2 main contributions. Firstly, a new and data-efficient method of signing relationships between individuals using sentiment analysis and, secondly, we provide an in-depth look at the properties of Signed Ego Networks (SENs), using 9 Twitter datasets of various categories of users. We find that negative connections are generally over-represented in the active part of the Ego Networks, suggesting that Twitter greatly over-emphasises negative relationships with respect to "offline" social networks. Further, users who use social networks for professional reasons have an even greater share of negative connections.

Keep Your Friends Close, and Your Enemies Closer: Structural Properties of Negative Relationships on Twitter

Tacchi, Jack
;
2024

Abstract

The Ego Network Model (ENM) is a model for the structural organisation of relationships, rooted in evolutionary anthropology, that is found ubiquitously in social contexts. It takes the perspective of a single user (Ego) and organises their contacts (Alters) into a series of (typically 5) concentric circles of decreasing intimacy and increasing size. Alters are sorted based on their tie strength to the Ego, however, this is difficult to measure directly. Traditionally, the interaction frequency has been used as a proxy but this misses the qualitative aspects of connections, such as signs (i.e. polarity), which have been shown to provide extremely useful information. However, the sign of an online social relationship is usually an implicit piece of information, which needs to be estimated by interaction data from Online Social Networks (OSNs), making sign prediction in OSNs a research challenge in and of itself. This work aims to bring the ENM into the signed networks domain by investigating the interplay of signed connections with the ENM. This paper delivers 2 main contributions. Firstly, a new and data-efficient method of signing relationships between individuals using sentiment analysis and, secondly, we provide an in-depth look at the properties of Signed Ego Networks (SENs), using 9 Twitter datasets of various categories of users. We find that negative connections are generally over-represented in the active part of the Ego Networks, suggesting that Twitter greatly over-emphasises negative relationships with respect to "offline" social networks. Further, users who use social networks for professional reasons have an even greater share of negative connections.
2024
Settore INF/01 - Informatica
cs.SI; cs.SI
   SoBigData.it – Strengthening the Italian RI for Social Mining and Big Data Analytics
   NextGenerationEU – National Recovery and Resilience Plan (Piano Nazionale di Ripresa e Resilienza, PNRR)
   IR0000013

   ICSC -National Centre for HPC, Big Data and Quantum Computing
   NextGeneration EU programme. PNRR - M4C2 - Investimento 1.4

   FAIR
   NextGeneration EU programme. PNRR. M4C2
File in questo prodotto:
File Dimensione Formato  
2401.16562v1.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 1.96 MB
Formato Adobe PDF
1.96 MB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/144383
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact