Two interacting Rydberg atoms coupled to a waveguide may realize a giant-atom platform that exhibits controllable (phase-dependent) chirality through which the direction of nonreciprocally scattered photons can be switched on demand, e.g., by the geometrical tuning of an external driving field. In our platform, at variance with traditional setups, the chirality arises from a simple optical implementation of the local phase difference between two coupling points of the Rydberg giant atom. When employing two (or more) driving fields, this platform can also be used as a frequency converter with its strongly asymmetric efficiency being significantly enhanced via the chiral couplings. Our Rydberg giant-atom platform is well suited for chiral quantum optics applications and further offers direct scalability for reaching tunable frequency conversion in the optical domain.

Single-photon manipulations based on optically controlled chiral couplings in waveguide structures of Rydberg giant atoms

Du, Lei;Artoni, M.;La Rocca, G. C.;
2024

Abstract

Two interacting Rydberg atoms coupled to a waveguide may realize a giant-atom platform that exhibits controllable (phase-dependent) chirality through which the direction of nonreciprocally scattered photons can be switched on demand, e.g., by the geometrical tuning of an external driving field. In our platform, at variance with traditional setups, the chirality arises from a simple optical implementation of the local phase difference between two coupling points of the Rydberg giant atom. When employing two (or more) driving fields, this platform can also be used as a frequency converter with its strongly asymmetric efficiency being significantly enhanced via the chiral couplings. Our Rydberg giant-atom platform is well suited for chiral quantum optics applications and further offers direct scalability for reaching tunable frequency conversion in the optical domain.
2024
Settore FIS/03 - Fisica della Materia
   PNRR Partenariati Estesi - NQSTI - National Quantum Science and Technology Institute.
   NQSTI
   Ministero della pubblica istruzione, dell'università e della ricerca
   PE00000023
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/146323
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact