Over the last decade, the African turquoise killifish, Nothobranchius furzeri, has emerged as an important model system for the study of vertebrate biology and ageing. Propagation of laboratory inbred strains of Nothobranchius furzeri, such as GRZ, however, can pose challenges due to the short window of fertility, the efforts and space requirements involved in continuous strain maintenance, and the risks of further inbreeding. The current method for long term strain preservation relies on arrest of embryos in diapause. To create an alternative for long term maintenance, we developed a robust protocol to cryopreserve and revive sperm for in vitro fertilization (IVF). We tested a variety of extender and activator buffers for sperm IVF, as well as cryoprotectants to achieve practical long-term storage and fertilization conditions tailored to this species. Our protocol enabled sperm to be preserved in a cryogenic condition for months and to be revived with an average of 40% viability upon thawing. Thawed sperm were able to fertilize nearly the same number of eggs as natural fertilization, with an average of ~ 25% and peaks of ~ 55% fertilization. This technical advance will greatly facilitate the use of N. furzeri as a model organism.

Sperm cryopreservation and in vitro fertilization techniques for the African turquoise killifish Nothobranchius furzeri

Dolfi, Luca;Ripa, Roberto;
2021

Abstract

Over the last decade, the African turquoise killifish, Nothobranchius furzeri, has emerged as an important model system for the study of vertebrate biology and ageing. Propagation of laboratory inbred strains of Nothobranchius furzeri, such as GRZ, however, can pose challenges due to the short window of fertility, the efforts and space requirements involved in continuous strain maintenance, and the risks of further inbreeding. The current method for long term strain preservation relies on arrest of embryos in diapause. To create an alternative for long term maintenance, we developed a robust protocol to cryopreserve and revive sperm for in vitro fertilization (IVF). We tested a variety of extender and activator buffers for sperm IVF, as well as cryoprotectants to achieve practical long-term storage and fertilization conditions tailored to this species. Our protocol enabled sperm to be preserved in a cryogenic condition for months and to be revived with an average of 40% viability upon thawing. Thawed sperm were able to fertilize nearly the same number of eggs as natural fertilization, with an average of ~ 25% and peaks of ~ 55% fertilization. This technical advance will greatly facilitate the use of N. furzeri as a model organism.
2021
Settore BIO/09 - Fisiologia
Animals; Cryopreservation; Female; Fertilization in Vitro; Fundulidae; Male; Semen Preservation; animal; cryopreservation; female; Fundulidae; in vitro fertilization; male; physiology; procedures; sperm preservation
File in questo prodotto:
File Dimensione Formato  
ivf.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 3.98 MB
Formato Adobe PDF
3.98 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/146363
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex 6
social impact