Different standard VPT2 codes employ Cartesian coordinates for the computation of rotational and vibrational spectroscopic parameters. However, curvilinear internal coordinates offer a number of advantages provided that a general non-redundant set of coordinates can be built and employed in an unsupervised workflow. In the present paper I summarize the main results and perspectives of a general engine employing curvilinear internal coordinates and perturbation theory for the computation of rotational and vibrational spectroscopic parameters of large molecules beyond the conventional rigid rotor/harmonic oscillator model. Some examples concerning biomolecule building blocks are discussed in some detail in order to better analyze the performance of the proposed strategy.
Harnessing the power of curvilinear internal coordinates : from molecular structure prediction to vibrational spectroscopy
Mendolicchio, Marco
2023
Abstract
Different standard VPT2 codes employ Cartesian coordinates for the computation of rotational and vibrational spectroscopic parameters. However, curvilinear internal coordinates offer a number of advantages provided that a general non-redundant set of coordinates can be built and employed in an unsupervised workflow. In the present paper I summarize the main results and perspectives of a general engine employing curvilinear internal coordinates and perturbation theory for the computation of rotational and vibrational spectroscopic parameters of large molecules beyond the conventional rigid rotor/harmonic oscillator model. Some examples concerning biomolecule building blocks are discussed in some detail in order to better analyze the performance of the proposed strategy.File | Dimensione | Formato | |
---|---|---|---|
s00214-023-03069-7.pdf
accesso aperto
Tipologia:
Published version
Licenza:
Creative Commons
Dimensione
1.61 MB
Formato
Adobe PDF
|
1.61 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.