: We study the transferring of useful energy (work) along a transmission line that allows for partial preservation of quantum coherence. As a figure of merit we adopt the maximum values that ergotropy, total ergotropy, and nonequilibrium free energy attain at the output of the line for an assigned input energy threshold. For phase-invariant bosonic Gaussian channel (BGC) models, we show that coherent inputs are optimal. For (one-mode) not phase-invariant BGCs we solve the optimization problem under the extra restriction of Gaussian input signals.

Quantum Energy Lines and the Optimal Output Ergotropy Problem

Tirone, Salvatore;Salvia, Raffaele;Giovannetti, Vittorio
2021

Abstract

: We study the transferring of useful energy (work) along a transmission line that allows for partial preservation of quantum coherence. As a figure of merit we adopt the maximum values that ergotropy, total ergotropy, and nonequilibrium free energy attain at the output of the line for an assigned input energy threshold. For phase-invariant bosonic Gaussian channel (BGC) models, we show that coherent inputs are optimal. For (one-mode) not phase-invariant BGCs we solve the optimization problem under the extra restriction of Gaussian input signals.
2021
Settore PHYS-04/A - Fisica teorica della materia, modelli, metodi matematici e applicazioni
Settore MATH-04/A - Fisica matematica
Channel modelling; Energy; Energy thresholds; Gaussian channels; Input energy; Nonequilibrium free energy; Phase invariants; Quanta energy; Quantum coherence; Transmission-line
   Taming complexity with quantum strategies: a hybrid integrated photonics approach. Cod. 2017SRNBRK_004
   Ministero della pubblica istruzione, dell'università e della ricerca
File in questo prodotto:
File Dimensione Formato  
2104.11255v3.pdf

accesso aperto

Tipologia: Accepted version (post-print)
Licenza: Creative Commons
Dimensione 835.04 kB
Formato Adobe PDF
835.04 kB Adobe PDF
PhysRevLett.127.210601.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 376.18 kB
Formato Adobe PDF
376.18 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/147623
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
  • OpenAlex ND
social impact