We introduce a new method to deal with families of norm form equations. These generalize the Thue equations studied first by Thomas using Baker's Method (which, however, we do not use here). We show that for all large integer values of the parameter t, every solution over (Formula presented.) arises from specializing a solution over (Formula presented.) by (Formula presented.). The results are completely effective.

PENCILS OF NORM FORM EQUATIONS AND A CONJECTURE OF THOMAS

AMOROSO, FRANCESCO;MASSER, David William;ZANNIER, UMBERTO
2021

Abstract

We introduce a new method to deal with families of norm form equations. These generalize the Thue equations studied first by Thomas using Baker's Method (which, however, we do not use here). We show that for all large integer values of the parameter t, every solution over (Formula presented.) arises from specializing a solution over (Formula presented.) by (Formula presented.). The results are completely effective.
2021
Settore MATH-02/B - Geometria
(Primary) 11G50; (Secondary) 11Jxx
File in questo prodotto:
File Dimensione Formato  
Licenza ZannierPost-PRINT.pdf

Accesso chiuso

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 297.02 kB
Formato Adobe PDF
297.02 kB Adobe PDF   Richiedi una copia
Mathematika.2021.Amoroso.Masser.Thomas-reprint.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 230.86 kB
Formato Adobe PDF
230.86 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/147703
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact