We prove a regularity result for Lagrangian flows of Sobolev vector fields over RCD(K, N) metric measure spaces; regularity is understood with respect to a newly defined quasi-metric built from the Green function of the Laplacian. Its main application is that RCD(K, N) spaces have constant dimension. In this way we generalize to such an abstract framework a result proved by Colding-Naber for Ricci limit spaces, introducing ingredients that are new even in the smooth setting.

Constancy of the Dimension for RCD(K,N) Spaces via Regularity of Lagrangian Flows

Semola, Daniele;Brué, Elia
2020

Abstract

We prove a regularity result for Lagrangian flows of Sobolev vector fields over RCD(K, N) metric measure spaces; regularity is understood with respect to a newly defined quasi-metric built from the Green function of the Laplacian. Its main application is that RCD(K, N) spaces have constant dimension. In this way we generalize to such an abstract framework a result proved by Colding-Naber for Ricci limit spaces, introducing ingredients that are new even in the smooth setting.
2020
Settore MATH-03/A - Analisi matematica
Curvature; Curvatura
File in questo prodotto:
File Dimensione Formato  
Comm Pure Appl Math - 2019 - Brué - Constancy of the Dimension for RCD K N Spaces via Regularity of Lagrangian Flows.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 609.4 kB
Formato Adobe PDF
609.4 kB Adobe PDF   Richiedi una copia
1804.07128v2.pdf

Open Access dal 02/05/2021

Tipologia: Accepted version (post-print)
Licenza: Solo Lettura
Dimensione 665.43 kB
Formato Adobe PDF
665.43 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/148105
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 60
  • OpenAlex ND
social impact