We prove a regularity result for Lagrangian flows of Sobolev vector fields over RCD(K, N) metric measure spaces; regularity is understood with respect to a newly defined quasi-metric built from the Green function of the Laplacian. Its main application is that RCD(K, N) spaces have constant dimension. In this way we generalize to such an abstract framework a result proved by Colding-Naber for Ricci limit spaces, introducing ingredients that are new even in the smooth setting.

Constancy of the Dimension for RCD(K,N) Spaces via Regularity of Lagrangian Flows

Semola, Daniele
2020

Abstract

We prove a regularity result for Lagrangian flows of Sobolev vector fields over RCD(K, N) metric measure spaces; regularity is understood with respect to a newly defined quasi-metric built from the Green function of the Laplacian. Its main application is that RCD(K, N) spaces have constant dimension. In this way we generalize to such an abstract framework a result proved by Colding-Naber for Ricci limit spaces, introducing ingredients that are new even in the smooth setting.
2020
Settore MATH-03/A - Analisi matematica
Curvature; Curvatura
File in questo prodotto:
File Dimensione Formato  
Comm Pure Appl Math - 2019 - Brué - Constancy of the Dimension for RCD K N Spaces via Regularity of Lagrangian Flows.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 609.4 kB
Formato Adobe PDF
609.4 kB Adobe PDF   Richiedi una copia
1804.07128v2.pdf

Open Access dal 02/05/2021

Tipologia: Accepted version (post-print)
Licenza: Solo Lettura
Dimensione 665.43 kB
Formato Adobe PDF
665.43 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/148105
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact