A well known notion of k-rectifiable set can be formulated in any metric space using Lipschitz images of subsets of Rk. We prove some characterizations of k-rectifiability, when the metric space is an arbitrary homogeneous group. In particular, we show that the a.e. existence of the (k,G)-approximate tangent group implies k-rectifiability.

Characterizations of k-rectifiability in homogeneous groups

Magnani, Valentino;Maiale, Francesco Paolo
2021

Abstract

A well known notion of k-rectifiable set can be formulated in any metric space using Lipschitz images of subsets of Rk. We prove some characterizations of k-rectifiability, when the metric space is an arbitrary homogeneous group. In particular, we show that the a.e. existence of the (k,G)-approximate tangent group implies k-rectifiability.
2021
Settore MATH-03/A - Analisi matematica
Homogeneous group; Approximate tangent group; Rectifiability; Lipschitz mapping
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/148348
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact