A well known notion of k-rectifiable set can be formulated in any metric space using Lipschitz images of subsets of Rk. We prove some characterizations of k-rectifiability, when the metric space is an arbitrary homogeneous group. In particular, we show that the a.e. existence of the (k,G)-approximate tangent group implies k-rectifiability.
Characterizations of k-rectifiability in homogeneous groups
Magnani, Valentino;Maiale, Francesco Paolo
2021
Abstract
A well known notion of k-rectifiable set can be formulated in any metric space using Lipschitz images of subsets of Rk. We prove some characterizations of k-rectifiability, when the metric space is an arbitrary homogeneous group. In particular, we show that the a.e. existence of the (k,G)-approximate tangent group implies k-rectifiability.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0022247X21001992-main.pdf
Accesso chiuso
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
433.36 kB
Formato
Adobe PDF
|
433.36 kB | Adobe PDF | Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.