Given a closed quantum system, the states that can be reached with a cyclic process are those with the same spectrum as the initial state. Here we prove that, under a very general assumption on the Hamiltonian, the distribution of the mean extractable work is very close to a gaussian with respect to the Haar measure. We derive bounds for both the moments of the distribution of the mean energy of the state and for its characteristic function, showing that the discrepancy with the normal distribution is increasingly suppressed for large dimensions of the system Hilbert space.

On the distribution of the mean energy in the unitary orbit of quantum states

Salvia, Raffaele
;
Giovannetti, Vittorio
2021

Abstract

Given a closed quantum system, the states that can be reached with a cyclic process are those with the same spectrum as the initial state. Here we prove that, under a very general assumption on the Hamiltonian, the distribution of the mean extractable work is very close to a gaussian with respect to the Haar measure. We derive bounds for both the moments of the distribution of the mean energy of the state and for its characteristic function, showing that the discrepancy with the normal distribution is increasingly suppressed for large dimensions of the system Hilbert space.
2021
Settore PHYS-04/A - Fisica teorica della materia, modelli, metodi matematici e applicazioni
Settore MATH-04/A - Fisica matematica
   Taming complexity with quantum strategies: a hybrid integrated photonics approach. Cod. 2017SRNBRK_004
   Ministero della pubblica istruzione, dell'università e della ricerca
File in questo prodotto:
File Dimensione Formato  
2012.14342v3.pdf

accesso aperto

Tipologia: Accepted version (post-print)
Licenza: Creative Commons
Dimensione 871.97 kB
Formato Adobe PDF
871.97 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/148684
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
  • OpenAlex ND
social impact