Point-vortex dynamics describe idealized, non-smooth solutions to the incompressible Euler equations on two-dimensional manifolds. Integrability results for few point-vortices on various domains is a vivid topic, with many results and techniques scattered in the literature. Here, we give a unified framework for proving integrability results for , 3, or 4 point-vortices (and also more general Hamiltonian systems), based on symplectic reduction theory. The approach works on any two-dimensional manifold with a symmetry group; we illustrate it on the sphere, the plane, the hyperbolic plane, and the flat torus. A systematic study of integrability is prompted by advances in two-dimensional turbulence, bridging the long-time behaviour of 2D Euler equations with questions of point-vortex integrability. A gallery of solutions is given in the appendix.
Integrability of point-vortex dynamics via symplectic reduction: a survey
Viviani, Milo;Modin, Klas
2021
Abstract
Point-vortex dynamics describe idealized, non-smooth solutions to the incompressible Euler equations on two-dimensional manifolds. Integrability results for few point-vortices on various domains is a vivid topic, with many results and techniques scattered in the literature. Here, we give a unified framework for proving integrability results for , 3, or 4 point-vortices (and also more general Hamiltonian systems), based on symplectic reduction theory. The approach works on any two-dimensional manifold with a symmetry group; we illustrate it on the sphere, the plane, the hyperbolic plane, and the flat torus. A systematic study of integrability is prompted by advances in two-dimensional turbulence, bridging the long-time behaviour of 2D Euler equations with questions of point-vortex integrability. A gallery of solutions is given in the appendix.File | Dimensione | Formato | |
---|---|---|---|
4. Integrability of Point-Vortex Dynamics via Symplectic.pdf
accesso aperto
Tipologia:
Published version
Licenza:
Creative Commons
Dimensione
1.87 MB
Formato
Adobe PDF
|
1.87 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.