— Let M be a closed orientable manifold. We introduce two numerical invariants, called filling volumes, on the mapping class group MCG(M) of M, which are defined in terms of filling norms on the space of singular boundaries on M, both with real and with integral coefficients. We show that filling volumes are length functions on MCG(M), we prove that the real filling volume of a mapping class f is equal to the simplicial volume of the corresponding mapping torus Ef, while the integral filling volume of f is not smaller than the stable integral simplicial volume of Ef. We discuss several vanishing and non-vanishing results for the filling volumes. As applications, we show that the hyperbolic volume of 3-dimensional mapping tori is not subadditive with respect to their monodromy, and that the real and the integral filling norms on integral boundaries are often non-biLipschitz equivalent.

Length functions on mapping class groups and simplicial volumes of mapping tori

Bertolotti, Federica;Frigerio, Roberto
2024

Abstract

— Let M be a closed orientable manifold. We introduce two numerical invariants, called filling volumes, on the mapping class group MCG(M) of M, which are defined in terms of filling norms on the space of singular boundaries on M, both with real and with integral coefficients. We show that filling volumes are length functions on MCG(M), we prove that the real filling volume of a mapping class f is equal to the simplicial volume of the corresponding mapping torus Ef, while the integral filling volume of f is not smaller than the stable integral simplicial volume of Ef. We discuss several vanishing and non-vanishing results for the filling volumes. As applications, we show that the hyperbolic volume of 3-dimensional mapping tori is not subadditive with respect to their monodromy, and that the real and the integral filling norms on integral boundaries are often non-biLipschitz equivalent.
2024
Settore MATH-02/B - Geometria
fibration over the circle; Filling volume; Length functions; Mapping class group; Mapping torus; Simplicial volume; Stable integral simplicial volume
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/149564
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact