We show that the integral filling volume of a Dehn twist f on a closed oriented surface vanishes, i.e., that the integral simplicial volume of the mapping torus with monodromy f n grows sublinearly with respect to n. We deduce a complete characterization of mapping classes on surfaces with vanishing integral filling volume and, building on results by Purcell and Lackenby on the complexity of mapping tori, we show that, in dimension three, complexity and integral simplicial volume are not Lipschitz equivalent.

Integral filling volume, complexity, and integral simplicial volume of 3-dimensional mapping tori

Bertolotti, Federica;Frigerio, Roberto
2024

Abstract

We show that the integral filling volume of a Dehn twist f on a closed oriented surface vanishes, i.e., that the integral simplicial volume of the mapping torus with monodromy f n grows sublinearly with respect to n. We deduce a complete characterization of mapping classes on surfaces with vanishing integral filling volume and, building on results by Purcell and Lackenby on the complexity of mapping tori, we show that, in dimension three, complexity and integral simplicial volume are not Lipschitz equivalent.
2024
Settore MATH-02/B - Geometria
fibered manifold; mapping class group; Dehn twist; triangulation; spine
File in questo prodotto:
File Dimensione Formato  
2303.07730v2.pdf

Accesso chiuso

Tipologia: Submitted version (pre-print)
Licenza: Tutti i diritti riservati
Dimensione 443.06 kB
Formato Adobe PDF
443.06 kB Adobe PDF   Richiedi una copia
10.4171-ggd-839-online-first.pdf

accesso aperto

Tipologia: Accepted version (post-print)
Licenza: Creative Commons
Dimensione 319.7 kB
Formato Adobe PDF
319.7 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/149566
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex 0
social impact