High-luminosity particle collider experiments such as the ones planned at the High-Luminosity Large Hadron Collider require ever-greater vertexing precision of the tracking detectors, necessitating reductions in the material budget of the detectors. Traditionally, the fractional radiation length (x/X 0) of detectors is either estimated using known properties of the constituent materials, or measured in dedicated runs of the final detector. In this paper, we present a method of direct measurement of the material budget of a CMS prototype module designed for the Phase-2 upgrade of the CMS detector using a 40-65 MeV positron beam. A total of 630 million events were collected at the Paul Scherrer Institut PiE1 experimental area using a three-plane telescope consisting of the prototype module as the central plane, surrounded by two MALTA monolithic pixel detectors. Fractional radiation lengths were extracted from scattering angle distributions using the Highland approximation for multiple scattering. A statistical technique recovered runs suffering from trigger desynchronisation, and several corrections were introduced to compensate for local inefficiencies related to geometric and beam shape constraints. Two regions of the module were surveyed and yielded average x/X 0 values of (0.72 ± 0.05)% and (0.95 ± 0.09)%, which are compatible with empirical estimates for these regions computed from known material properties of 0.753% and 0.892%, respectively. Two types of higher-granularity maps of the fractional radiation length were produced, subdivided either into rectangular regions of uniform size, or polygonal-shaped regions of uniform material composition. The results bode well for the CMS Phase-2 upgrade modules, which will play a key role in the minimisation of the material of the upgraded detector.

Measurement of the fractional radiation length of a pixel module for the CMS Phase-2 upgrade via the multiple scattering of positrons

Ligabue F.;
2024

Abstract

High-luminosity particle collider experiments such as the ones planned at the High-Luminosity Large Hadron Collider require ever-greater vertexing precision of the tracking detectors, necessitating reductions in the material budget of the detectors. Traditionally, the fractional radiation length (x/X 0) of detectors is either estimated using known properties of the constituent materials, or measured in dedicated runs of the final detector. In this paper, we present a method of direct measurement of the material budget of a CMS prototype module designed for the Phase-2 upgrade of the CMS detector using a 40-65 MeV positron beam. A total of 630 million events were collected at the Paul Scherrer Institut PiE1 experimental area using a three-plane telescope consisting of the prototype module as the central plane, surrounded by two MALTA monolithic pixel detectors. Fractional radiation lengths were extracted from scattering angle distributions using the Highland approximation for multiple scattering. A statistical technique recovered runs suffering from trigger desynchronisation, and several corrections were introduced to compensate for local inefficiencies related to geometric and beam shape constraints. Two regions of the module were surveyed and yielded average x/X 0 values of (0.72 ± 0.05)% and (0.95 ± 0.09)%, which are compatible with empirical estimates for these regions computed from known material properties of 0.753% and 0.892%, respectively. Two types of higher-granularity maps of the fractional radiation length were produced, subdivided either into rectangular regions of uniform size, or polygonal-shaped regions of uniform material composition. The results bode well for the CMS Phase-2 upgrade modules, which will play a key role in the minimisation of the material of the upgraded detector.
2024
Settore PHYS-01/A - Fisica sperimentale delle interazioni fondamentali e applicazioni
Detector design and construction technologies and materials; Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc); Instrumentation for particle accelerators and storage rings - low energy (linear accelerators, cyclotrons, electrostatic accelerators); Particle tracking detectors (Solid-state detectors)
   International, Interdisciplinary & Intersectoral Postdoctoral Fellowships at the Paul Scherrer Institut
   PSI-FELLOW-III-3i
   European Commission
   Horizon 2020 Framework Programme
   884104
File in questo prodotto:
File Dimensione Formato  
Adam_2024_J._Inst._19_P10023.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 16.68 MB
Formato Adobe PDF
16.68 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/149745
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex 0
social impact