Abstract: The radiative decays χc1(3872) → ψ(2S) γ and χc1(3872) → J/ψγ are used to probe the nature of the χc1(3872) state using proton-proton collision data collected with the LHCb detector, corresponding to an integrated luminosity of 9 fb−1. Using the B+ → χc1(3872)K+ decay, the χc1(3872) → ψ(2S) γ process is observed for the first time and the ratio of its partial width to that of the χc1(3872) → J/ψγ decay is measured to be (Formula presented.) where the first uncertainty is statistical, the second systematic and the third is due to the uncertainties on the branching fractions of the ψ(2S) and J/ψ mesons. The measured ratio makes the interpretation of the χc1(3872) state as a pure D0D¯∗0 + D¯0 D*0 molecule questionable and strongly indicates a sizeable compact charmonium or tetraquark component within the χc1(3872) state.
Probing the nature of the χc1(3872) state using radiative decays
Kleijne, N.Membro del Collaboration Group
;Morello, M. J.Membro del Collaboration Group
;Passaro, D.Membro del Collaboration Group
;Riccardi, D.Membro del Collaboration Group
;
2024
Abstract
Abstract: The radiative decays χc1(3872) → ψ(2S) γ and χc1(3872) → J/ψγ are used to probe the nature of the χc1(3872) state using proton-proton collision data collected with the LHCb detector, corresponding to an integrated luminosity of 9 fb−1. Using the B+ → χc1(3872)K+ decay, the χc1(3872) → ψ(2S) γ process is observed for the first time and the ratio of its partial width to that of the χc1(3872) → J/ψγ decay is measured to be (Formula presented.) where the first uncertainty is statistical, the second systematic and the third is due to the uncertainties on the branching fractions of the ψ(2S) and J/ψ mesons. The measured ratio makes the interpretation of the χc1(3872) state as a pure D0D¯∗0 + D¯0 D*0 molecule questionable and strongly indicates a sizeable compact charmonium or tetraquark component within the χc1(3872) state.File | Dimensione | Formato | |
---|---|---|---|
JHEP11(2024)121.pdf
accesso aperto
Tipologia:
Published version
Licenza:
Creative Commons
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.