Modeling how a shock propagates in a temporal network and how the system relaxes back to equilibrium is challenging but important in many applications, such as financial systemic risk. Most studies, so far, have focused on shocks hitting a link of the network, while often it is the node and its propensity to be connected that are affected by a shock. Using the configuration model-a specific exponential random graph model-as a starting point, we propose a vector autoregressive (VAR) framework to analytically compute the Impulse Response Function (IRF) of a network metric conditional to a shock on a node. Unlike the standard VAR, the model is a nonlinear function of the shock size and the IRF depends on the state of the network at the shock time. We propose a novel econometric estimation method that combines the maximum likelihood estimation and Kalman filter to estimate the dynamics of the latent parameters and compute the IRF, and we apply the proposed methodology to the dynamical network describing the electronic market of interbank deposit.

Modeling shock propagation and resilience in financial temporal networks

Lillo F.;Rizzini G.
2025

Abstract

Modeling how a shock propagates in a temporal network and how the system relaxes back to equilibrium is challenging but important in many applications, such as financial systemic risk. Most studies, so far, have focused on shocks hitting a link of the network, while often it is the node and its propensity to be connected that are affected by a shock. Using the configuration model-a specific exponential random graph model-as a starting point, we propose a vector autoregressive (VAR) framework to analytically compute the Impulse Response Function (IRF) of a network metric conditional to a shock on a node. Unlike the standard VAR, the model is a nonlinear function of the shock size and the IRF depends on the state of the network at the shock time. We propose a novel econometric estimation method that combines the maximum likelihood estimation and Kalman filter to estimate the dynamics of the latent parameters and compute the IRF, and we apply the proposed methodology to the dynamical network describing the electronic market of interbank deposit.
2025
Settore SECS-S/06 - Metodi mat. dell'economia e Scienze Attuariali e Finanziarie
Settore STAT-04/A - Metodi matematici dell'economia e delle scienze attuariali e finanziarie
   PNRR Infrastrutture di Ricerca - SoBigData.it - Strengthening the Italian RI for Social Mining and Big Data Analytics.
   SoBigData.it
   Ministero della pubblica istruzione, dell'università e della ricerca
   IR0000013

   SoBigData Research Infrastructure.
   SoBigData
   European Commission
   H2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/152424
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact