We prove that given any two general probabilistic theories (GPTs) the following are equivalent: (i) each theory is nonclassical, meaning that neither of their state spaces is a simplex; (ii) each theory satisfies a strong notion of incompatibility equivalent to the existence of “superpositions”; and (iii) the two theories are entangleable, in the sense that their composite exhibits either entangled states or entangled measurements. Intuitively, in the post-quantum GPT setting, a superposition is a set of two binary ensembles of states that are unambiguously distinguishable if the ensemble is revealed before the measurement has occurred, but not if it is revealed after. This notion is important because we show that, just like in quantum theory, superposition in the form of strong incompatibility is sufficient to realize the Bennett-Brassard 1984 protocol for secret key distribution.
Entanglement and superposition are equivalent concepts in any physical theory
Lami, Ludovico;
2022
Abstract
We prove that given any two general probabilistic theories (GPTs) the following are equivalent: (i) each theory is nonclassical, meaning that neither of their state spaces is a simplex; (ii) each theory satisfies a strong notion of incompatibility equivalent to the existence of “superpositions”; and (iii) the two theories are entangleable, in the sense that their composite exhibits either entangled states or entangled measurements. Intuitively, in the post-quantum GPT setting, a superposition is a set of two binary ensembles of states that are unambiguously distinguishable if the ensemble is revealed before the measurement has occurred, but not if it is revealed after. This notion is important because we show that, just like in quantum theory, superposition in the form of strong incompatibility is sufficient to realize the Bennett-Brassard 1984 protocol for secret key distribution.| File | Dimensione | Formato | |
|---|---|---|---|
|
36-Entanglement-superposition-equivalent.pdf
Accesso chiuso
Tipologia:
Published version
Licenza:
Tutti i diritti riservati
Dimensione
284.64 kB
Formato
Adobe PDF
|
284.64 kB | Adobe PDF | Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



