Many fruitful analogies have emerged between the theories of quantum entanglement and thermodynamics, motivating the pursuit of an axiomatic description of entanglement akin to the laws of thermodynamics. A long-standing open problem has been to establish a true second law of entanglement, and in particular a unique function that governs all transformations between entangled systems, mirroring the role of entropy in thermodynamics. Contrary to previous promising evidence, here we show that this is impossible and that no direct counterpart to the second law of thermodynamics can be established. This is accomplished by demonstrating the irreversibility of entanglement theory from first principles. Assuming only the most general microscopic physical constraints of entanglement manipulation, we show that entanglement theory is irreversible under all non-entangling transformations. We furthermore rule out reversibility without significant entanglement expenditure, showing that reversible entanglement transformations require the generation of macroscopically large amounts of entanglement according to certain measures. Our results not only reveal fundamental differences between quantum entanglement transformations and thermodynamic processes, but also showcase a unique property of entanglement that distinguishes it from other known quantum resources.

No second law of entanglement manipulation after all

Lami, Ludovico;
2023

Abstract

Many fruitful analogies have emerged between the theories of quantum entanglement and thermodynamics, motivating the pursuit of an axiomatic description of entanglement akin to the laws of thermodynamics. A long-standing open problem has been to establish a true second law of entanglement, and in particular a unique function that governs all transformations between entangled systems, mirroring the role of entropy in thermodynamics. Contrary to previous promising evidence, here we show that this is impossible and that no direct counterpart to the second law of thermodynamics can be established. This is accomplished by demonstrating the irreversibility of entanglement theory from first principles. Assuming only the most general microscopic physical constraints of entanglement manipulation, we show that entanglement theory is irreversible under all non-entangling transformations. We furthermore rule out reversibility without significant entanglement expenditure, showing that reversible entanglement transformations require the generation of macroscopically large amounts of entanglement according to certain measures. Our results not only reveal fundamental differences between quantum entanglement transformations and thermodynamic processes, but also showcase a unique property of entanglement that distinguishes it from other known quantum resources.
2023
Settore PHYS-04/A - Fisica teorica della materia, modelli, metodi matematici e applicazioni
Quantum; Separability; Criterion; Limits; Axiomatics; Entangled system; Entanglement manipulation; Entanglement theory; Entanglement transformation; First principles; Laws of thermodynamics; Physical constraints; Second law; Second Law of Thermodynamics
File in questo prodotto:
File Dimensione Formato  
42-No-second-law.pdf

accesso aperto

Tipologia: Published version
Licenza: Creative Commons
Dimensione 1.97 MB
Formato Adobe PDF
1.97 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/153162
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 38
  • OpenAlex ND
social impact